

Popper

Popper is an experimentation protocol for organizing a academic article’s
artifacts following a DevOps approach (sometimes referred to as “SciOps”). This
documentation describes the experimentation protocol and the Popper CLI tool;
it gives examples from multiple domains showing how to follow the protocol; and
also shows how to use a CI system to continuously validate Popperized
experiments.

	Getting Started
	New pipeline

	Popper Run

	Adding Project to GitHub

	Adding Project to Travis

	Integrating with GitHub

	Learn More

	Introduction to Popper Pipelines
	Popper Pipelines

	Repository Structure

	Pipeline Folder Structure

	The popper.yml configuration file
	pipelines

	metadata

	popperized

	Popper and CI systems
	CI System Configuration

	CI Functionality

	Testing Locally

	Popper Badges

	Popper vs. Other Software
	Scientific Workflow Engines

	Virtualenv, Conda, Packrat, etc.

	CI systems

	Reprozip / Sciunit

	Review Workflow

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Popper is a convention for organizing an academic article’s
artifacts following a DevOps [https://en.wikipedia.org/wiki/DevOps]
approach, with the goal of making it easy for others (and yourself!)
to repeat an experiment or analysis pipeline.

We first need to install the CLI tool by following these
instructions [https://github.com/systemslab/popper/tree/master/cli#install].
Show the available commands:

popper help

Show which version you installed:

popper version

NOTE: this exercise was written using 0.5

Create a project repository (if you are not familiar with git, look here [https://www.learnenough.com/git-tutorial]):

mkdir mypaper
cd mypaper
git init
echo '# mypaper' > README.md
git add .
git commit -m 'first commit'

Initialize the popper repository and add the .popper.yml file to
git:

popper init
git add .
git commit -m 'adds .popper.yml file'

New pipeline

Initialize pipeline using init (scaffolding):

popper init myexp

Show what this did:

ls -l pipelines/myexp

Commit the “empty” pipeline:

git add pipelines/myexp
git commit -m 'adding myexp scaffold'

Popper Run

Run popper run:

popper run

To run a pipeline named myexp:

popper run myexp

NOTE: By default, popper run runs all commands directly on
the host. We recommend running an isolated environment. In order to do
this, one can create a pipeline using the --env flag of the popper init command. For example, popper init <pipeline> --env=alpine-3.4
runs a command inside an alpine-3.4 container.

Once a pipeline is executed, one can show the logs:

ls -l pipelines/myexp/popper_logs

Adding Project to GitHub

Create a repository on github and upload our commits.

Adding Project to Travis

For this, we need an account at Travis CI. Once we have one, we
activate the project so it is continuously validated.

Generate .travis.yml file:

popper ci travis

And commit the file:

git add .travis.yml
git commit -m 'Adds TravisCI config file'

Trigger an execution by pushing to github:

git push

Go to TravisCI website to see your experiments being executed.

Integrating with GitHub

Some of the popper sub-commands (e.g. :- popper search) make use of the GitHub
API. Since GitHub only allows up to 60 unauthenticated requests per hour on
its API, some of these sub-commands will fail to give appropriate results on heavy
usage.

To resolve this, we need to :

	Create a GitHub personal access token, as shown here [https://bit.ly/2rvbeT1].

	Copy the token and set it as an environment variable with the name POPPER_GITHUB_API_TOKEN in our computer.

This will allow the popper command to use our access token to make authenticated requests.

Learn More

A more detailed description of Popper is explained in the next
section.

A step-by-step guide describes how to
“Popperize” a repository. Additionally, the following is a list of
examples on how to bootstrap a Popper project (repository) in specific
domains:

	Data Science

	High Performance Computing (HPC)

	Mathematical Sciences

A list of articles describing the Popper protocol, as well as other
Popperized papers that have been submitted for publication can be
found here [https://falsifiable.us/pubs].

Introduction to Popper Pipelines

Over the last decade software engineering and systems administration
communities (also referred to as
DevOps [https://en.wikipedia.org/wiki/DevOps]) have developed
sophisticated techniques and strategies to ensure “software
reproducibility”, i.e. the reproducibility of software artifacts and
their behavior using versioning, dependency management,
containerization, orchestration, monitoring, testing and
documentation. The key idea behind the Popper protocol is to manage
every experiment in computation and data exploration as a software
project, using tools and services that are readily available now and
enjoy wide popularity. By doing so, scientific explorations become
reproducible with the same convenience, efficiency, and scalability as
software repeatable while fully leveraging continuing improvements to
these tools and services. Rather than mandating a particular set of
tools, the convention only expects components of an experiment to be
scripted. There are two main goals for Popper:

	It should be usable in as many research projects as possible,
regardless of their domain.

	It should abstract underlying technologies without requiring a
strict set of tools, making it possible to apply it on multiple
toolchains.

Popper Pipelines

A common generic analysis/experimentation workflow involving a
computational component is the one shown below. We refer to this as a
pipeline in order to abstract from experiments, simulations, analysis
and other types of scientific explorations. Although there are some
projects that don’t fit this description, we focus on this model since
it covers a large portion of pipelines out there. Typically, the
implementation and documentation of a scientific exploration is
commonly done in an ad-hoc way (custom bash scripts, storing in local
archives, etc.).

[image: Experimentation Workflow. The analogy of a lab notebook inexperimental sciences is to document an experiment's evolution. Thisis rarely done and, if done, usually in an ad-hoc way (an actualnotebook or a text file).]

The idea behind Popper is simple: make an article self-contained by
including in a code repository the manuscript along with every
experiment’s scripts, inputs, parametrization, results and validation.
To this end we propose leveraging state-of-the-art technologies and
applying a DevOps approach to the implementation of scientific
pipelines (also referred to
SciOps [https://en.wikipedia.org/wiki/DevOps#Scientific_DevOps_(SciOps)]).

[image: DevOps approach to Implementing Scientific Explorations, alsoreferred to as SciOps.]

Popper is a convention (or protocol) that maps the implementation of a
pipeline to software engineering (and DevOps/SciOps) best-practices
followed in open-source software projects. If a pipeline is
implemented by following the Popper convention, we call it a
popper-compliant pipeline or popper pipeline for short. A popper
pipeline is implemented using DevOps tools (e.g., version-control
systems, lightweight OS-level virtualization, automated multi-node
orchestration, continuous integration and web-based data
visualization), which makes it easier to re-execute and validate.

We say that an article (or a repository) is Popper-compliant if its
scripts, dependencies, parameterization, results and validations are
all in the same respository (i.e., the pipeline is self-contained). If
resources are available, one should be able to easily re-execute a
popper pipeline in its entirety. Additionally, the commit log becomes
the lab notebook, which makes the history of changes made to it
available to readers, an invaluable tool to learn from others and
“stand on the shoulder of giants”. A “popperized” pipeline also makes
it easier to advance the state-of-the-art, since it becomes easier to
extend existing work by applying the same model of development in OSS
(fork, make changes, publish new findings).

Repository Structure

The general repository structure is simple: a paper and pipelines
folders on the root of the project with one subfolder per pipeline

$> tree mypaper/
├── pipelines
│ ├── exp1
│ │ ├── README.md
│ │ ├── output
│ │ │ ├── exp1.csv
│ │ │ ├── post.sh
│ │ │ └── view.ipynb
│ │ ├── run.sh
│ │ ├── setup.sh
│ │ ├── teardown.sh
│ │ └── validate.sh
│ ├── analysis1
│ │ ├── README.md
│ │ └── ...
│ └── analysis2
│ ├── README.md
│ └── ...
└── paper
 ├── build.sh
 ├── figures/
 ├── paper.tex
 └── refs.bib

Pipeline Folder Structure

A minimal pipeline folder structure for an experiment or analysis is
shown below:

$> tree -a paper-repo/pipelines/myexp
paper-repo/pipelines/myexp/
├── README.md
├── post-run.sh
├── run.sh
├── setup.sh
├── teardown.sh
└── validate.sh

Every pipeline has setup.sh, run.sh, post-run.sh, validate.sh
and teardown.sh scripts that serve as the entrypoints to each of the
stages of a pipeline. All these return non-zero exit codes if there’s
a failure. In the case of validate.sh, this script should print to
standard output one line per validation, denoting whether a validation
passed or not. In general, the form for validation results is
[true|false] <statement> (see examples below).

[true] algorithm A outperforms B
[false] network throughput is 2x the IO bandwidth

The CLI [https://github.com/systemslab/popper/popper] tool includes a
pipeline init subcommand that can be executed to scaffold a pipeline
with the above structure. The syntax of this command is:

popper pipeline init <name>

Where <name> is the name of the pipeline to initialize. More details
on how pipelines are executed is presented in the next section.

The popper.yml configuration file

The popper command reads the .popper.yml file in the root of a
project to figure out how to execute pipelines. While this file can be
manually created and modified, the popper command makes changes to
this file depending on which commands are executed.

The project folder we will use as example looks like the following:

$> tree -a -L 2 my-paper
my-paper/
├── .git
├── .popper.yml
├── paper
└── pipelines
 ├── analysis
 └── data-generation

That is, it contains three pipelines named data-generation and analysis. The .popper.yml for this project looks
like:

pipelines:
 paper:
 envs:
 - host
 path: paper
 stages:
 - build
 data-generation:
 envs:
 - host
 path: pipelines/data-generation
 stages:
 - first
 - second
 - post-run
 - validate
 - teardown
 analysis:
 envs:
 - host
 path: pipelines/analysis
 stages:
 - run
 - post-run
 - validate
 - teardown

metadata:
 author: My Name
 name: The name of my study

popperized:
 - github/popperized
 - github/ivotron/quiho-popper

At the top-level of the YAML file there are entries named pipelines, metadata and
popperized.

pipelines

The pipelines YAML entry specifies the details for all the available
pipelines. For each pipeline, there is information about:

	the environment(s) in which the pipeline is be executed.

	the path to that pipeline.

	the various stages that are present in it.

The special paper pipeline is generated by executing popper init paper and has by default a single stage named build.sh.

envs

The envs entry in .popper.yml specifies the environment that a
pipeline is used when the pipeline is executed as part of the popper run command. The available environments are:

	host. The experiment is executed directly on the host.

	alpine-3.4, ubuntu-16.04 and centos-7.2. For each of these,
popper check is executed within a docker container whose base
image is the given Linux distribution name. The container has
docker available inside it so other containers can be executed
from within the popper check container.

The popper init command can be used to initialize a pipeline. By
default, the host is registered when using popper init. The
--env flag of popper init can be used to specify another
environment. For example:

popper init mypipe --env=alpine-3.4

The above specifies that the pipeline named mypipe will be executed
inside a docker container using the alpine-3.4 popper check image.

To add more environment(s):

popper env myexp --add ubuntu-xenial,centos-7.2

To remove enviroment(s):

popper env myexp --rm centos-7.2

stages

The stages YAML entry specifies the sequence of stages that are
executed by the popper run command. By default, the popper init
command generates scaffold scripts for setup.sh, run.sh,
post-run.sh, validate.sh, teardown.sh. If any of those are not
present when the pipeline is executed using popper run, they are
just skipped (without throwing an error). At least one stage needs to
be executed, otherwise popper run throws an error.

If arbitrary names are desired for a pipeline, the --stages flag of
the popper init command can be used. For example:

popper init arbitrary_stages \
 --stages 'preparation,execution,validation' \

The above line generates the configuration for the arbitrary_stages
pipeline showed in the example.

metadata

The metadata YAML entry specifies the set of data that gives information
about the user’s project. It can be added using the popper metadata --add command
For example :

popper metadata --add authors='Dennis Ritchie'

This adds a metadata entry ‘authors’ to the the project
metadata.

To view the metadata of a repository type:

popper metadata

To remove the entry ‘authors’ from the metadata:

popper metadata --rm authors

popperized

The popperized YAML entry specifies the list of Github organizations and repositories that contain popperized pipelines. By default, it points to the
github/popperized organization. This list is used to look for pipelines as part of the popper search command.

Popper and CI systems

By following a convention for structuring the files of a project, an
experimentation pipeline execution and validation can be automated
without the need for manual intervention. In addition to this, the
status of a pipeline (integrity over time) can be tracked by a
continuous integration (CI)
service [https://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software].
In this section we describe how Popper integrates with some existing
CI services.

CI System Configuration

The PopperCLI [https://github.com/systemslab/popper/popper] tool
includes a ci subcommand that can be executed to generate
configuration files for multiple CI systems. The syntax of this
command is the following:

popper ci <system-name>

Where <system-name> is the name of CI system (see popper ci --help
to get a list of supported systems). In the following, we show how to
link github with some of the supported CI systems.

TravisCI

For this, we need an account at Travis CI [http://travis-ci.org].
Assuming our Popperized repository is already on GitHub, we can enable
it on TravisCI so that it is continuously validated (see
here [https://docs.travis-ci.com/user/getting-started/] for a guide).
Once the project is registered on Travis, we proceed to generate a
.travis.yml file:

cd my-popper-repo/
popper ci travis

And commit the file:

git add .travis.yml
git commit -m 'Adds TravisCI config file'

We then can trigger an execution by pushing to GitHub:

git push

After this, one go to the TravisCI website to see your pipelines being
executed. Every new change committed to a public repository will
trigger an execution of your pipelines. To avoid triggering an
execution for a commit, include a line with [skip ci] as part of the
commit message.

NOTE: TravisCI has a limit of 2 hours, after which the test is
terminated and failed.

CircleCI

For CircleCI [https://circleci.com/], the procedure is similar to
what we do for TravisCI (see above):

	Sign in to CircleCI using your github account and enable your
repository.

	Generate config files and add them to the repo:

cd my-popper-repo/
popper ci circleci
git add .circleci
git commit -m 'Adds CircleCI config file'
git push

Jenkins

For Jenkins [https://jenkinsci.org], generating a Jenkinsfile is
done in a similar way:

cd my-popper-repo/
popper ci jenkins
git add Jenkinsfile
git commit -m 'Adds Jenkinsfile'
git push

Jenkins is a self-hosted service and needs to be properly configured
in order to be able to read a github project with a Jenkinsfile in
it. The easiest way to add a new project is to use the Blue Ocean
UI [https://jenkins.io/projects/blueocean/]. A step-by-step guide on
how to create a new project using the Blue Ocean UI can be found
here [https://jenkins.io/doc/book/blueocean/creating-pipelines/]. In
particular, the New Pipeline from a Single Repository has to be
selected (as opposed to Auto-discover Pipelines).

As part of our efforts, we provide a ready-to-use Docker image for
Jenkins with all the required dependencies. See here
for an example of how to use it. We also host an instance of this
image at http://ci.falsifiable.us and can provide accounts for users
to make use of this Jenkins server (for an account, send an email to
ivo@cs.ucsc.edu).

CI Functionality

The following is the list of steps that are verified when validating
an pipeline:

	For every pipeline, trigger an execution by sequentially invoking
all the scripts for all the defined stages of the pipeline.

	After the pipeline finishes, if a validate.sh script is defined,
parse its output.

	Keep track of every pipeline and report their status.

There are three possible statuses for every pipeline: FAIL, PASS
and GOLD. There are two possible values for the status of a
validation, FAIL or PASS. When the pipeline status is FAIL, this
list of validations is empty since the pipeline execution has failed
and validations are not able to execute at all. When the pipeline
status’ is GOLD, the status of all validations is PASS. When the
pipeline runs correctly but one or more validations fail (pipeline’s
status is PASS), the status of one or more validations is FAIL.

Testing Locally

The
PopperCLI [https://github.com/systemslab/popper/tree/master/popper]
tool includes a check subcommand that can be executed to test
locally. This subcommand is the same that is executed by the PopperCI
service, so the output of its invocation should be, in most cases, the
same as the one obtained when PopperCI executes it. This helps in
cases where one is testing locally. To execute test locally:

cd my/paper/repo
popper check myexperiment

Popper check started
Running stage setup.sh
Running stage run.sh
Running stage validate.sh .
Running stage teardown.sh ..
Popper check finished: SUCCESS

The status of the execution is stored in the popper_status file,
while stdout and stderr output for each stage is written to the
popper_logs folder.

tree popper_logs
popper_logs/
├── run.sh.out
├── run.sh.err
├── setup.sh.out
├── setup.sh.err
├── teardown.sh.out
├── teardown.sh.err
├── validate.sh.out
└── validate.sh.err

These files are added to the
.gitignore [https://help.github.com/articles/ignoring-files/] file
so they won’t be committed to the git repository when doing git add.
To quickly remove them, one can clean the working tree:

get list of files that would be deleted
include directories (-d)
include ignored files (-x)
git clean -dx --dry-run

remove --dry-run and add --force to actually delete files
git clean -dx --force

Popper Badges

We maintain a badging service that can be used to keep track of the
status of a pipeline. In order to enable this, the --enable-badging
flag has to be passed to the popper ci subcommand.

[image: Badging service.]

Badges are commonly used to denote the status of a software project
with respect to certain aspect, e.g. whether the latest version can be
built without errors, or the percentage of code that unit tests cover
(code coverage). Badges available for Popper are shown in the above
figure. If badging is enabled, after the execution of a pipeline, the
status of a pipeline is recorded in the badging server, which keeps
track of statuses for every revision of ever pipeline.

Users can include a link to the badge in the README page of a
pipeline, which can be displayed on the web interface of the version
control system (GitHub in this case). The CLI tool can generate links
for pipelines:

popper badge <exp>

Which prints to stdout the text that should be added to the README
file of the pipeline.

Popper vs. Other Software

With the goal of putting Popper in context, the following is a list of
comparisons with other existing tools.

Scientific Workflow Engines

Scientific workflow
engines [https://en.wikipedia.org/wiki/Scientific_workflow_system] are
“a specialized form of a workflow management system designed
specifically to compose and execute a series of computational or data
manipulation steps, or workflow, in a scientific application.”
Taverna [https://taverna.incubator.apache.org/] and
Pegasus [https://pegasus.isi.edu/] are examples of widely used
scientific workflow engines. For a comprehensive list, see
here [https://github.com/pditommaso/awesome-pipeline].

A Popper pipeline can be seen as the highest-level workflow of a
scientific exploration, the one which users or automation services
interact with (which can be visualized by doing popper workflow). A
stage in a popper pipeline can itself trigger the execution of a
workflow on one of the aforementioned workflow engines. A way to
visualize this is shown in the following image:

[image:]

The above corresponds to a pipeline whose run.sh stage triggers the
execution of a workflow for a numeric weather prediction setup (the
code is available here [https://github.com/popperized/nwp-popper]).
Ideally, the workflow specification files (e.g. in
CWP [http://www.commonwl.org/] format) would be stored in the
repository and be passed as parameter in a bash script that is part of
a popper pipeline. For an example of a popper pipeline using the
Toil [https://github.com/BD2KGenomics/toil] genomics workflow engine,
see here [https://github.com/popperized/PopperCI_Toil].

Virtualenv, Conda, Packrat, etc.

Language runtime-specific tools for Python, R, and others, provide the
ability of recreating and isolating environments with all the
dependencies that are needed by an application that is written in one
of these languages. For example
virtualenv [https://virtualenv.pypa.io/] can be used to create an
isolated environment with all the dependencies of a python
application, including the version of the python runtime itself. This
is a lightweight way of creating portable pipelines.

Popper pipelines automate and create an explicit record of the steps
that need to be followed in order to create these isolated
environments. For an example of a pipeline of this kind, see here.

For pipelines that execute programs written in statically typed
languages (e.g. C++), these types of tools are not a good fit and
other “full system” virtualization solutions such as Docker or Vagrant
might be a better alternative. For an example of such a pipeline, see
here [https://github.com/popperized/nwp-popper].

CI systems

Continuous Integration (CI) is a development practice that requires
developers to integrate code into a shared repository frequently with
the purpose of catching errors as early as possible. The pipelines
associated with an article can also benefit from CI. If the output of
a pipeline can be verified and validated by codifying any expectation,
in the form of a unit test (a command returning a boolean value), this
can be verified on every change to a pipeline repository.

Travis CI [https://travis-ci.org/] is an open-source, hosted,
distributed continuous integration service used to build and test
software projects hosted at GitHub. Alternatives to Travis CI are
CircleCI [https://circleci.com] and CodeShip [https://codeship.com].
Other self-hosted solutions exist such as
Jenkins [http://jenkins-ci.org]. Each of these services require users
to specify and automate tests using their own configuration files (or
domain specific languages).

Popper can be seen as a service-agnostic way of automating tests that
can run on multiple CI services with minimal effort. The popper ci
command generates configuration
files [http://popper.readthedocs.io/en/latest/ci/popperci.html#ci-system-configuration]
that existing CI systems read in order to execute a popper pipeline.
Additionally, with most of existing tools and services, users don’t
have a way of easily checking the integrity of a pipeline locally,
whereas Popper can be used easily to test a pipeline
locally [http://popper.readthedocs.io/en/latest/ci/popperci.html#testing-locally].
Lastly, since the concept of a pipeline and validations associated to
them is a first-class citizen in Popper, we can not only check that a
pipeline can execute correctly (SUCCESS or FAILURE) but we can also
verify that the output is the one
expected [http://popper.readthedocs.io/en/latest/ci/popperci.html#ci-functionality]
by the original implementers.

Reprozip / Sciunit

Reprozip [https://www.reprozip.org/] “allows you to pack your
research along with all necessary data files, libraries, environment
variables and options”, while Sciunit “are efficient,
lightweight, self-contained packages of computational experiments that
can be guaranteed to repeat or reproduce regardless of deployment
issues”. They accomplish this by making use of
ptrace [https://en.wikipedia.org/wiki/Ptrace] to track all
dependencies of an application.

Popper can help in automating the tasks required to install
Reprozip/Sciunit, as well as to create and execute Reprozip packages
and Sciunits. However, a Popper pipeline is already self-contained and
can be made portable by explicitly using language (e.g. virtualenv),
OS-level (e.g. Singularity) or hardware (e.g. Virtualbox)
virtualization tools. In these cases, using Reprozip or Sciunit would
be redundant, since they make use of Docker or Vagrant “underneath the
covers” in order to provide portable experiment packages/units.

Review Workflow

The following provides a list of steps with the goal of reviewing a
popper pipeline that someone else has created:

	The popper workflow command generates a graph that gives a
high-level view of what the pipeline does.

	Inspect the content of each of the scripts from the pipeline.

	Test that the pipeline works on your machine by running popper run.

	Check that the git repo was archived (snapshotted) to zenodo or
figshare by running popper zenodo or popper figshare.

Index

Jenkins Docker Image

We have created an image with all the plugins necessary to
automatically validate Popper pipelines. To launch an instance of this
Docker image server:

docker run -d --name=jenkins \
 -p 8080:8080 \
 -v jenkins_home:/var/jenkins_home \
 falsifiable/jenkins

The above launches a Jenkins server that can be accessed on port
8080 of the machine where this command was launched (e.g.
localhost:8080 if you did this on your machine).

For more info on how to use this image, take a look at the official
documentation [https://github.com/jenkinsci/docker/blob/master/README.md]
for this image.

ci.falsifiable.us [http://ci.falsifiable.us]

To make use of our server, please first send a message to
ivo@cs.ucsc.edu to request an account. After an account is created,
you will be able to access the server. Follow the steps outlined
here [http://popper.readthedocs.io/en/latest/ci/popperci.html#jenkins]
to add a Jenkinsfile to your project. Alternatively, create this
file manually with the following contents:

stage ('Popper') {
 node {
 sh "curl -O https://raw.githubusercontent.com/systemslab/popper/master/popper/_check/check.py"
 sh "chmod 755 check.py"
 sh "./check.py"
 }
}

Then, follow this step-by-step
guide [https://jenkins.io/doc/book/blueocean/creating-pipelines/] on
how to create a new project using the Blue Ocean UI.

Example: Data Science

The following describes a series of steps to
bootstrap a data science paper that follows the Popper convention
using the Popper-CLI tool. Popper in this scenario is followed so that
datasets are properly referenced and analysis scripts used to process
data (as well as any output data) are versioned and associated to an
article. For more on the Popper convention, look at the [[Intro to Popper]] article.

While in this guide we use LATeX, Docker, dpm and Jupyter, any of
these can be swapped for equivalent tools. To learn more about how to
use other tools and how the Popper convention is toolchain-agnostic,
see here [https://github.com/systemslab/popper/wiki/Intro-to-Popper#popper-compliant-tools].

Requirements:

	git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git]

	docker [https://docs.docker.com/engine/installation/]

	popper-cli [https://github.com/systemslab/popper/releases]

Initialize a Popper Repository

Our Popper-CLI tool assumes a git repository exists. To create one:

mkdir mypaper
cd mypaper
git init
echo "# My Paper Repo" > README.md
git commit -m "First commit of my paper repo."

See
here [https://help.github.com/articles/good-resources-for-learning-git-and-github/]
for a list of good resources for learning git. Once a git repo exists,
we can invoke the popper-cli tool:

cd mypaper
popper init

The above creates a .popper.yml file that contains configuration
options for the CLI tool. This file should be committed to the paper
repository (git repo we create above). For an explanation on the
folder structure of a Popper repo, see here.

Adding a New Experiment

The Popper convention outlines how to make it practical to generate
reproducible experiments. As part of our effort, we maintain a list
of experiment templates that have been “popperized” (see
here [https://github.com/systemslab/popper/wiki/Intro-to-Popper#popper-compliant-experiments] for an
explanation of what constitutes a Popper-compliant experiment). To see
a list of available experiments:

popper experiment list

In order to add a new experiment, we refer to a template and assign a
name to it. The general invocation form is the following:

popper experiment add <template> <experiment-name>

For example, assume we want to analyze data from an experiment in the
area of meteorological sciences (a template created as part of the
Big Weather Web project [http://bigweatherweb.org]):

popper experiment jupyter-bww myexperiment

This data analysis experiment consists of one dataset and a jupyter
notebook. To retrieve the dataset to the local machine:

cd experiments/myexperiment

docker run --rm -v `pwd`/datapackages:/datapackages \
 ivotron/dpm install /datapackages/air-temperature

NOTE: The above makes use of the
dpm [https://github.com/frictionlessdata/dpm] tool for managing
datapackages [http://frictionlessdata.io/about/]. The tool doesn’t
support file:/// URLs yet (until this
issue [https://github.com/frictionlessdata/dpm/issues/55] gets
resolved). In the meantime, to download the dataset from github,
replace /datapackages/air-temperature with
https://github.com/ivotron/air-temperature.

To visualize and interact with the data analysis of this experiment:

cd experimetns/myexperiment
./visualize

The above opens a browser and points it to the notebook. In this
example, the dataset used by the notebook resides in the
myexperiment/datapackages/ folder.

For this experiment we assume that input data has been externally
generated, i.e. dataset creation is not part of the experiment. Also,
the analysis runs on a single machine. Other types of data science
projects might involve generating their input datasets and/or process
data in a cluster of machines. Popper still can be followed in these
scenarios (e.g. see [[Popper-Distributed-Systems]] and
[[Popper-HPC]]).

Adding More Datasets

Datasets are stored (or referenced) in the datapackages/ (or
datasets/) folder of each experiment, with one subfolder for each
dataset. For examples datasets see
here [https://github.com/datasets]. To add or reference a new
dataset, one has to either provide a URL of the dataset, or inspect a
the list of datapackages available in a data repository using the
dpm tool. Available repositories are github, ckan and thredds.

NOTE: Support for THREDDS is not part of the official dpm
client yet. Work is being done in this as part of the big weather
web project [http://bigweatherweb.org].

Once a dataset URL is available, one can install a package by doing

docker run --rm -v `pwd`/datapackages:/datapackages \
 ivotron/dpm install http://motherlode.ucar.edu:8080/thredds/bww/

To display the info for a package, use the info command of dpm.
For more info on how to use dpm take a look at the official
documentation [https://github.com/frictionlessdata/dpm].

Generating Image Files For Reference In Manuscripts

Assume we add a new type of analysis to the notebook and we want to
generate an image. For the notebook of our example
(xarray-tutorial.ipynb [https://github.com/Unidata/unidata-users-workshop/blob/master/notebooks/xray-tutorial.ipynb]
of the jupyter-bww experiment), we can generate a file for figure 2
(Line [45]). In Jupyter, we add a new cell below the figure and type
the following line:

plt.savefig('air-temperature.png',bbox_inches='tight', dpi=300)

Since the experiment folder is available in the filesystem that
Jupyter has available to it, the figure persists even after the
Jupyter server exits. To automatically re-execute the analysis and
re-generate figures from a notebook, one can use the run-notebook
script contained in the jupyter-bww experiment:

cd myexperiment
./run-notebook

Documenting the Experiment

After we’re done with our experiment, we might want to document it and
add a paper. We can use the generic article latex template or other
more domain-specific one (available
here [https://github.com/systemslab/popper]). To display the
available templates we do popper paper list. In this example we’ll
use the latex template for articles that appear in the Bulletin of
the American meteorological Society
(BAMS) [http://journals.ametsoc.org/loi/bams]:

popper paper add latex-ametsoc

Let’s assume we will have a new section in the LATeX file where we
describe our experiment. We will make use of the figure that we
generated in the previous section. We can make the assumption that the
experiments folder is available at the level of the latex file, so we
can reference the image directly. For example:

\begin{figure}[t]
 \includegraphics{experiments/myexperiment/air-temperature.png}\\
 \caption{Air temperature.}\label{f1}
\end{figure}

And to re-generate the PDF containing the new image:

cd paper
./build

Documenting Changes to Experiments

The paper repository is the analogy to the lab notebook in
experimental science. There are many ways in which these changes can
be registered in the form of code repository commits. A couple of
tips:

	Make changes small. Avoid having large commits since that makes it
harder to document.

	Separate commits that change the logic of the experiment and
analysis, from the ones that record changes to results.

	Commit messages should describe in as much detail as possible the
changes to the experiment, or the new results being added to the
repository.

For examples of Popperized repositories, see here.
We are currently working with researchers in this domain to include
more experiments to our templates
repository [https://github.com/systemslab/popper]. If you are
interested in contributing one but are not certain on how to start,
please feel free to email us,
chat [https://gitter.im/systemslab/popper] or open an
issue [https://github.com/systemslab/popper/issues/new].

Implementing an Experiment

This guide shows how to follow Popper when carrying out a scientific
exploration. We will use the experimentation workflow shown below to
guide our discussion. We assume that the only artifact available at
the beginning of the exploration is the piece of code (leftmost
component in the diagram) that is used as the basis of our study (e.g.
a system, a simulation, analysis code, etc.).

Before we implement the code related to our exploration, we need to
decide which tools we will use for each of the components of the
workflow. A concrete list of steps that we follow:

	Decide how to package the code.

	Write the experiment steps in a script.

	For big input/output datasets, codify their management.

	Script the analysis and visualization of results.

	Specify the validation criteria and codify it if possible.

	Automate the generation of a manuscript (if any).

In the following we explore each steps in more detail. For examples of
already “Popperized” explorations, take a look at
here.

[image: DevOps approach to Experiments.]

The Popper Repository

The first thing is to create the repository that will hold all the
experiment assets. Any version-control tool can serve this purpose. We
recommend using Git or Mercurial, mainly because these have web
interfaces that are popular and easy to use (e.g.
Github [https://github.com], GitLab [https://gitlab.com/explore] or
Bitbucket [https://bitbucket.org]). To create a repository using Git:

mkdir mypaper
cd mypaper
git init
echo "# My Paper Repo" > README.md
git commit -m "First commit of my paper repo."

See
here [https://help.github.com/articles/good-resources-for-learning-git-and-github/]
for a list of resources for learning git. Once a git repo exists, we
proceed to add the assets associated with an experiment.

It’s important to keep in mind that the commit log (messages
associated to every change) of the Git repository serves the purpose
of a labnotebook [https://en.wikipedia.org/wiki/Lab_notebook]. It’s
useful to follow general commit
guidelines [http://gitforteams.com/resources/commit-granularity.html]
that that apply for any kind of project, with the exception of trying
to be as verbose and explicit as possible to make it easier for others
to understand what are the changes in a commit, from the point of view
of the experimentation process.

Packaging

Usually the piece of code that is used as the basis of study resides
in its own repository. Instead of bringing that entire codebase to the
Popper repository, it’s better to reference a
package1 in the experiment scripts. In this
way, the maintenance of the code and experiment logic can be kept
separate.

[bookmark: myfootnote1]1: By package, we mean any medium through
which a piece of software is delivered to its end users. This
definition is generic enough that covers traditional OS package
managers, but also other types of packaging, such as dynamic language
packages (e.g. pip), Virtual Machines and Linux containers.

If a package for the codebase in question is not available, there are
quick ways to generate a packaged version of the code. One such way is
to use
Docker [https://docs.docker.com/engine/tutorials/dockerimages/] to
package it. For example, in this experiment we
make use of a library [https://github.com/flame/blis] by creating a
Docker image [https://github.com/ivotron/docker-blis] that we
reference in the experiment
script [https://github.com/systemslab/popper/blob/master/templates/experiments/blis/run.sh].

The main goal of the packaging step is to end up with a “black box”
that we use as part of our experiment. We pass it experiment
parameters (variable values and input datasets) and we obtain results:

 params ------ output
---------> | code | -------->

Scripting The Experiment

Our goal is to codify the series of steps that are taken as part of
the experiment. For obtaining the structure of an experiment
folder:

popper init myexperiment

For experiments that run in a local machine,
bash [https://www.gnu.org/software/bash/] is sufficient (see
example
here [https://github.com/systemslab/popper/blob/master/templates/experiments/mpip/run.sh]).
For multi-node experiments, a tool like
Ansible [https://github.com/ansible/ansible] can be used to
orchestrate the experiment (see example
here [https://github.com/ivotron/torpor-popper/tree/master/experiments/base-vs-limited-targets]).
In any case, these scripts should be added to the Popper (Git)
repository.

Dataset Management

For small input (or output) datasets consumed (or generated) by the
experiment, they can be added to the repository along with the
experiment scripts. It’s important to make these available so that
other people can compare when repeating an experiment. Typical file
formats used in practice while obtaining experiment results are CSV or
JSON files. When datasets are too
big [https://help.github.com/articles/working-with-large-files/] to be
efficiently managed by Git, other tools can be used. Examples are
GitLFS [https://git-lfs.github.com/] or
Datapackages [http://frictionlessdata.io/data-packages/]. For an
example of an experiment using Datapackages, take a look
here.

As mentioned before, when committing changes to the Popper (Git)
repository, it is a good practice to separate commits that affect the
logic of the experiment from those that add new results.

Analysis and Visualization

Visualizing and analyzing output data should be done with tools that
allow to be scripted. Examples are the wide category of “notebooks”
such as Jupyter [http://jupter.org],
Zeppelin [http://zeppelin.apache.org/],
Beaker [http://beakernotebook.com/], among others. For an example of
an experiment using a notebook, see
here [https://github.com/systemslab/popper/blob/master/templates/experiments/blis/results/visualize.ipynb].

An alternative to notebooks is to use sites such as
Plot.ly [https://plot.ly/] or
Tableau [http://www.tableau.com/products/cloud-bi] that provide
analysis and visualization “as a service”. The main features that
tools in this category have to support is to allow for scripts to be
provided and results to be obtained and retrieved so that they can be
stored in the Popper (Git) repository. It is good practice to have a
single commit to represent both the change to raw results (output
datasets) and the visualization of such results (image files).

Adding Validation Criteria

Integrity of the experimental results. These domain-specific tests
ensure that the claims made in the paper are valid for every
re-execution of the experiment, analogous to performance regression
tests done in software projects. Alternatively, claims can also be
corroborated as part of the analysis code. When experiments are not
sensitive to the effects of virtualized platforms, these assertions
can be executed on public/free continuous
integration [https://en.wikipedia.org/wiki/Continuous_integration]
platforms (e.g. TravisCI [https://travis-ci.org] runs tests in VMs).

However, when results are sensitive to the underlying hardware, it is
preferable to leave this out of the CI pipeline and make them part of
the post-processing routines of the experiment. High-level languages
can be used to corroborate claims made against output results.
Aver [https://github.com/ivotron/aver] is an example of such a
language that can express these type of assertions and also can be use
to check their validity. Examples of these type of statements are:
“the runtime of our algorithm is 10x better than the baseline when the
level of parallelism exceeds 4 concurrent threads”; or “for dataset A,
our model predicts the outcome with an error of 95%”. For an example,
check here [https://github.com/ivotron/aver#overview].

Reporting Results

Any markup language can be used for reporting results. Markdown or
LATeX are examples. For LATeX, ideally one would like to include all
the dependencies that are needed to generate the publishable format of
the manuscript (e.g. PDF). An alternative is to provide a VM or Docker
image with all the dependencies in such a way that readers don’t need
to manage the installation and configuration of the markup language
processor. For examples, see
here [https://github.com/popperized/popper-readthedocs-examples/].

Example: HPC

We describe how to use Popper in high performance computing (HPC)
scenarios. A typical experiment in HPC assumes many things from the
environment: an NFS mount point available in compute nodes, a batch
scheduler, applications installed/compiled directly on the host (i.e.
without any type of virtualization), among others. In this case,
Popper is followed to record the scripts used to compile, install and
run the experiment, as well as analyze its results.

Dependencies:

	Git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git]

	Spack [https://github.com/llnl/spack/]

	Docker [https://docs.docker.com/engine/installation/]

We assume that the $HOME/mypaper folder is available in the users’
laptop as well as on the nodes of the machine where the experiment
runs.

We have several experiments available via the Popper-CLI tool
(obtained from the templates
repository [https://github.com/systemslab/popper]). Assuming the repo
has been initialized (see here
this), we can
show the list of available experiments by doing:

$ cd $HOME/mypaper
$ popper experiment list

In this example we’ll make use of the
mpip [https://github.com/systemslab/popper/tree/master/templates/experiments/mpip]
experiment:

$ popper experiment add mpip

$ ls experiments/mpip
total 16K
-rwxr-x--- 1 ivo ivo 157 Oct 5 10:35 analyze.sh
-rwxr-x--- 1 ivo ivo 253 Oct 5 10:35 install.sh
drwxrwx--- 2 ivo ivo 4.0K Oct 5 10:35 results/
-rwxr-x--- 1 ivo ivo 325 Oct 5 10:35 run.sh

The experiment corresponds to an execution of the
LULESH [https://codesign.llnl.gov/lulesh.php] MPI proxy
application [http://www.lanl.gov/projects/codesign/proxy-apps/assets/docs/proxyapps_strategy.pdf]
compiled against mpiP [http://mpip.sourceforge.net/]. The experiment
consists of three scripts: install.sh installs the dependencies via
spack [https://github.com/llnl/spack/]; run.sh executes LULESH;
and analyze.sh post-process the results that are gathered by mpiP.

Since spack installs dependencies from source, the install.sh
script should be executed in a node with the same architecture as the
one of the compute nodes where LULESH will run (e.g. in a “head” node
of the machine). The run.sh script is passed to the batch scheduler,
which is SLURM in this case. Once the experiment finishes, mpiP
places a text file in the results/ folder (a text file file ending
in .mpiP) that contains MPI runtime metrics. The analyze.sh script
launches a Jupyter [http://jupyter.org/] notebook server (using
Docker) that analyzes the output of mpiP and generates a graph
summarizing MPI statistics. To see an example of how the notebook
looks see
here [https://github.com/systemslab/popper/blob/master/templates/experiments/mpip/results/notebook.ipynb].

We are currently working with researchers in this domain to include
more experiments to our templates
repository [https://github.com/systemslab/popper]. If you are
interested in contributing one but are not certain on how to start,
please feel free to email us,
chat [https://gitter.im/systemslab/popper] or open an
issue [https://github.com/systemslab/popper/issues/new].

Example: Math Sciences

We describe how to bootstrap a scientific exploration that follows
Popper in the mathematical sciences domain. For a generic description
of how to follow Popper, see here. A typical
exploration in this domain consists of code that implements some
numerical computation and, possibly, input datasets used for the
experiment. In this case, Popper is followed to manage the changes
done to the scripts used to compile, install and run the experiment,
as well as analyze its results.

Dependencies:

	Git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git]

	Docker [https://docs.docker.com/engine/installation/]

We have several experiments available via the Popper-CLI tool
(obtained from the templates
repository [https://github.com/systemslab/popper]). Assuming the repo
has been initialized (see
here for how
to), we can show the list of available experiments by doing:

$ cd $HOME/mypaper
$ popper experiment list

In this example we’ll make use of the
blis [https://github.com/systemslab/popper/tree/master/experiments/blis]
experiment:

$ popper experiment add blis blis-vs-others

$ ls experiments/blis-vs-others
total 16K
-rwxr-x--- 1 ivo ivo 157 Oct 5 10:35 analyze.sh
drwxrwx--- 2 ivo ivo 4.0K Oct 5 10:35 results/
-rwxr-x--- 1 ivo ivo 325 Oct 5 10:35 run.sh

BLIS [https://github.com/flame/blis] is a portable software framework
for instantiating high-performance BLAS-like dense linear algebra
libraries. This experiment corresponds to the one presented in the
first BLIS paper [http://doi.acm.org/10.1145/2764454]. A subsequent
report [http://dl.acm.org/citation.cfm?id=2738033] documents how to
repeat this experiment. This Popper template corresponds to sections
2.1-2.3 of the replicability report.

To avoid having users configure and recompile the code every time one
intends to repeat the experiment, we created a Docker
image [https://github.com/ivotron/docker-blis/tree/master/Dockerfile]
that has all the binaries for BLIS, OpenBLAS and Atlas precompiled.
Modifying and rebuilding the image is also possible (see
here [https://docs.docker.com/engine/tutorials/dockerimages/] for
documentation). The run.sh script pulls the Docker image and
executes the experiment, generating output to the results/ folder.

The output consists of Matlab files. The results/ folder also
contains a set of scripts for generating Figures 13-15 from the
original paper. The analyze.sh script launches a
Jupyter [http://jupyter.org/] notebook server (using Docker) that
executes this scripts and generates the graphs. To see an example of
how the notebook looks see
here [https://github.com/systemslab/popper/blob/master/experiments/blis/results/visualize.ipynb].

We are currently working with researchers in this domain to include
more experiments to our templates
repository [https://github.com/systemslab/popper]. If you are
interested in contributing one but are not certain on how to start,
please feel free to email us,
chat [https://gitter.im/systemslab/popper] or open an
issue [https://github.com/systemslab/popper/issues/new].

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/workflow.png
®ee® ~ experiment.log ~

07/01/2015

Created first version of experiment

07/03/2015

Added new parameters to experiment and obtained first results on workload A,
with metrics that measure performance.

07/04/2015

Analyzed results for workload A, identified the need to incorporate corner cases
to the main algorithm.

[/

07/20/2

Package

Visualize

_images/workflow_devops.png
-

By UL

1 7eStru lext

Analyze/
Visualize

Q-
i ,, 1:\ 'OZ*:*’O I !
y 0'44 [
' Q' T
worklead manage

I DAy pacKAC I I I

I NN ENN ENN NN BN SEE EEN BN S S - L I ————

I npu [

| v i | torpor-popper (branch: master)

| aA L 1 master =1t Q, Subject

I / I Branch Create Branch Search

I 7 I Author Date

| [O ((master)(Corigin/HEAD](origin/master JAdd... lvo Jimenez 2016-10-05...

| [Q Adds torpor as a submodule Ivo Jimenez 2016-08-25...

S —— ® Results of running base-vs-tar... Ivo Jimenez 2016-08-25...

--- MakesuseOf.baselinerlrOIefo"‘ IVOJimeneZ 2016_08-25'“ [o]

O Removes unused line Ilvo Jimenez 2016-08-21...
O Will add later Ilvo Jimenez 2016-08-21...
O Re-adds baseliner ansible role Ilvo Jimenez 2016-08-21...
O renames ansible folder to exper... Ivo Jimenez 2016-08-21...
O benchmarks now have their ow... Ivo Jimenez 2016-08-21...
O Adds latest version of baseliner... Ivo Jimenez 2016-06-12...
O Adds experiment on all stress-... Ivo Jimenez 2016-06-12...
O Adds same-platform variability... Ivo Jimenez 2016-06-10...
O WIP on using baseliner role Ilvo Jimenez 2016-06-10...
O Checks first if docker is already... Ivo Jimenez 2016-05-16...
O Tunning cpu-quota of 5 machines Ivo Jimenez 2016-05-16...
O Fixes creation of parameters an... Ivo Jimenez 2016-05-16...
a i i i i i -

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Popper

 		
 Getting Started

 		
 New pipeline

 		
 Popper Run

 		
 Adding Project to GitHub

 		
 Adding Project to Travis

 		
 Integrating with GitHub

 		
 Learn More

 		
 Introduction to Popper Pipelines

 		
 Popper Pipelines

 		
 Repository Structure

 		
 Pipeline Folder Structure

 		
 The popper.yml configuration file

 		
 pipelines

 		
 envs

 		
 stages

 		
 metadata

 		
 popperized

 		
 Popper and CI systems

 		
 CI System Configuration

 		
 TravisCI

 		
 CircleCI

 		
 Jenkins

 		
 CI Functionality

 		
 Testing Locally

 		
 Popper Badges

 		
 Popper vs. Other Software

 		
 Scientific Workflow Engines

 		
 Virtualenv, Conda, Packrat, etc.

 		
 CI systems

 		
 Reprozip / Sciunit

 		
 Review Workflow

_images/cibadges.png
Run multi-node
experiment on one of
supported backends

e

Trigger
@execution
-LJ _—r_e
Commit * m
@change to @ Validate experiment

experiment results by testing l @ Experiment generates

amazon

webservices

codified assertions on output datasets or
utput runtime metrics

/

and associated status
Popper FAIL to the corresponding
ommit
Popper OK

Popper |GOLD

@Keep track of execution

\o

_images/popper_pipeline_vs_workflow_engine.png
setup.sh

create data volumes

-

™~

docker: cleanup data volumes

docker: create wps_geog data volume

run.sh

docker: create sandy data volume

run WPS/WRF/UPP \

mkdir: create output directories

validate sh

docker: run WPS/WRF/UPP (NWP: pre-proc, model, post-proc) script in docker-space.

Generate output plots and validate using MET

— 4 T

mkdir: create output directories

docker: Run NCL with user scipt

docker: Run MET script in docker-space.

REAL

