

Popper

Popper is an experimentation protocol for organizing a academic article’s
artifacts following a DevOps approach (sometimes referred to as “SciOps”). This
documentation describes the experimentation protocol and the Popper CLI tool;
it gives examples from multiple domains showing how to follow the protocol; and
also shows how to use a CI system to continuously validate Popperized
experiments.

	Getting Started
	New pipeline

	Popper Run

	Adding Project to GitHub

	Adding Project to Travis

	Concepts
	Scientific Exploration Pipelines

	Popper Pipelines

	Popper vs. Other Software

	CLI feautures
	New pipeline initialization

	Executing a pipeline

	Specifying environment requirements

	Reusing existing pipelines

	Continuously validating a pipeline

	Popper Badges

	Visualizing a pipeline

	Adding metadata to a project

	Archiving and DOI generation

	The popper.yml configuration file

	CI features
	Execution logic

	Execution environments

	Parametrizing pipelines

	Matrix Executions

	Popper Badges

	Examples
	Pipeline portability

	Dataset Management

	Infrastructure automation

	Domain-specific pipelines

	Results Validation

	Pipeline Parametrization

	Provenance and automatic dependency resolution

	Other Resources
	Automated Artifact Evaluation

	Self-paced Tutorial

	FAQ
	How can we deal with large datasets? For example I have to work on large data of hundreds GB, how would this be integrated into Popper?

	How can Popper capture more complex workflows? For example, automatically restarting failed tasks?

	Can I follow Popper in computational science research, as opposed to computer science?

	How to apply the Popper protocol for applications that take large quantities of computer time?

	Contributing
	Code of Conduct

	Contributing CLI features

	Contributing example pipelines

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Popper is a convention for organizing an academic article’s
artifacts following a DevOps [https://en.wikipedia.org/wiki/DevOps]
approach, with the goal of making it easy for others (and yourself!)
to repeat an experiment or analysis pipeline.

We first need to install the CLI tool by following these
instructions [https://github.com/systemslab/popper/tree/master/cli#install].
Show the available commands:

popper --help

Show which version you installed:

popper version

Create a project repository (if you are not familiar with git, look
here [https://www.learnenough.com/git-tutorial]):

mkdir mypaper
cd mypaper
git init
echo '# mypaper' > README.md
git add .
git commit -m 'first commit'

Initialize the popper repository and add the .popper.yml file to
git:

popper init
git add .
git commit -m 'adds .popper.yml file'

New pipeline

Initialize pipeline using init (scaffolding):

popper init myexp

Show what this did:

ls -l pipelines/myexp

Commit the “empty” pipeline:

git add pipelines/myexp
git commit -m 'adding myexp scaffold'

Popper Run

Run popper run:

popper run

Once a pipeline is executed, one can show the logs:

ls -l pipelines/myexp/popper_logs

Adding Project to GitHub

Create a repository on
github [https://help.github.com/articles/create-a-repo/], register the
remote repository to your local git and push all your commits:

git remote add origin git@github.com:<user>/<repo>
git push -u origin master

where <user> is your username and <repo> is the name of the
repository you have created.

Adding Project to Travis

For this, we need to login to Travis
CI [https://docs.travis-ci.com/user/getting-started/#Prerequisites]
using our Github credentials. Once this is done, we activate the
project [https://docs.travis-ci.com/user/getting-started/#To-get-started-with-Travis-CI]
so it is continuously validated.

Generate .travis.yml file:

popper ci --service travis

And commit the file:

git add .travis.yml
git commit -m 'Adds TravisCI config file'

Trigger an execution by pushing to github:

git push

Go to TravisCI website to see your experiments being executed.

Concepts

Scientific Exploration Pipelines

Over the last decade software engineering and systems administration
communities (also referred to as
DevOps [https://en.wikipedia.org/wiki/DevOps]) have developed
sophisticated techniques and strategies to ensure “software
reproducibility”, i.e. the reproducibility of software artifacts and
their behavior using versioning, dependency management,
containerization, orchestration, monitoring, testing and
documentation. The key idea behind the Popper protocol is to manage
every experiment in computation and data exploration as a software
project, using tools and services that are readily available now and
enjoy wide popularity. By doing so, scientific explorations become
reproducible with the same convenience, efficiency, and scalability as
software repeatable while fully leveraging continuing improvements to
these tools and services. Rather than mandating a particular set of
tools, the convention only expects components of an experiment to be
scripted. There are two main goals for Popper:

	It should be usable in as many research projects as possible,
regardless of their domain.

	It should abstract underlying technologies without requiring a
strict set of tools, making it possible to apply it on multiple
toolchains.

A common generic analysis/experimentation workflow involving a
computational component is the one shown below. We refer to this as a
pipeline in order to abstract from experiments, simulations, analysis
and other types of scientific explorations. Although there are some
projects that don’t fit this description, we focus on this model since
it covers a large portion of pipelines out there. Typically, the
implementation and documentation of a scientific exploration is
commonly done in an ad-hoc way (custom bash scripts, storing in local
archives, etc.).

[image: Experimentation Workflow. The analogy of a lab notebook inexperimental sciences is to document an experiment's evolution. Thisis rarely done and, if done, usually in an ad-hoc way (an actualnotebook or a text file).]

Popper Pipelines

The idea behind Popper is simple: make an article self-contained by
including in a code repository the manuscript along with every
experiment’s scripts, inputs, parametrization, results and validation.
To this end we propose leveraging state-of-the-art technologies and
applying a DevOps approach to the implementation of scientific
pipelines (also referred to
SciOps [https://en.wikipedia.org/wiki/DevOps#Scientific_DevOps_(SciOps)]).

[image: DevOps approach to Implementing Scientific Explorations, alsoreferred to as SciOps.]

Popper is a convention (or protocol) that maps the implementation of a
pipeline to software engineering (and DevOps/SciOps) best-practices
followed in open-source software projects. If a pipeline is
implemented by following the Popper convention, we call it a
popper-compliant pipeline or popper pipeline for short. A popper
pipeline is implemented using DevOps tools (e.g., version-control
systems, lightweight OS-level virtualization, automated multi-node
orchestration, continuous integration and web-based data
visualization), which makes it easier to re-execute and validate.

We say that an article (or a repository) is Popper-compliant if its
scripts, dependencies, parameterization, results and validations are
all in the same respository (i.e., the pipeline is self-contained). If
resources are available, one should be able to easily re-execute a
popper pipeline in its entirety. Additionally, the commit log becomes
the lab notebook, which makes the history of changes made to it
available to readers, an invaluable tool to learn from others and
“stand on the shoulder of giants”. A “popperized” pipeline also makes
it easier to advance the state-of-the-art, since it becomes easier to
extend existing work by applying the same model of development in OSS
(fork, make changes, publish new findings).

Repository Structure

The general repository structure is simple: a paper and pipelines
folders on the root of the project with one subfolder per pipeline

$> tree mypaper/
├── pipelines
│ ├── exp1
│ │ ├── README.md
│ │ ├── output
│ │ │ ├── exp1.csv
│ │ │ ├── post.sh
│ │ │ └── view.ipynb
│ │ ├── run.sh
│ │ ├── setup.sh
│ │ ├── teardown.sh
│ │ └── validate.sh
│ ├── analysis1
│ │ ├── README.md
│ │ └── ...
│ └── analysis2
│ ├── README.md
│ └── ...
└── paper
 ├── build.sh
 ├── figures/
 ├── paper.tex
 └── refs.bib

Pipeline Folder Structure

A minimal pipeline folder structure for an experiment or analysis is
shown below:

$> tree -a paper-repo/pipelines/myexp
paper-repo/pipelines/myexp/
├── README.md
├── post-run.sh
├── run.sh
├── setup.sh
├── teardown.sh
└── validate.sh

Every pipeline has setup.sh, run.sh, post-run.sh, validate.sh
and teardown.sh scripts that serve as the entrypoints to each of the
stages of a pipeline. All these return non-zero exit codes if there’s
a failure. In the case of validate.sh, this script should print to
standard output one line per validation, denoting whether a validation
passed or not. In general, the form for validation results is
[true|false] <statement> (see examples below).

[true] algorithm A outperforms B
[false] network throughput is 2x the IO bandwidth

The CLI [https://github.com/systemslab/popper/popper] tool includes a
pipeline init subcommand that can be executed to scaffold a pipeline
with the above structure. The syntax of this command is:

popper pipeline init <name>

Where <name> is the name of the pipeline to initialize. More details
on how pipelines are executed is presented in the next section.

Popper vs. Other Software

With the goal of putting Popper in context, the following is a list of
comparisons with other existing tools.

Scientific Workflow Engines

Scientific workflow
engines [https://en.wikipedia.org/wiki/Scientific_workflow_system] are
“a specialized form of a workflow management system designed
specifically to compose and execute a series of computational or data
manipulation steps, or workflow, in a scientific application.”
Taverna [https://taverna.incubator.apache.org/] and
Pegasus [https://pegasus.isi.edu/] are examples of widely used
scientific workflow engines. For a comprehensive list, see
here [https://github.com/pditommaso/awesome-pipeline].

A Popper pipeline can be seen as the highest-level workflow of a
scientific exploration, the one which users or automation services
interact with (which can be visualized by doing popper workflow). A
stage in a popper pipeline can itself trigger the execution of a
workflow on one of the aforementioned workflow engines. A way to
visualize this is shown in the following image:

[image:]

The above corresponds to a pipeline whose run.sh stage triggers the
execution of a workflow for a numeric weather prediction setup (the
code is available here [https://github.com/popperized/nwp-popper]).
Ideally, the workflow specification files (e.g. in
CWP [http://www.commonwl.org/] format) would be stored in the
repository and be passed as parameter in a bash script that is part of
a popper pipeline. For an example of a popper pipeline using the
Toil [https://github.com/BD2KGenomics/toil] genomics workflow engine,
see here [https://github.com/popperized/PopperCI_Toil].

Virtualenv, Conda, Packrat, etc.

Language runtime-specific tools for Python, R, and others, provide the
ability of recreating and isolating environments with all the
dependencies that are needed by an application that is written in one
of these languages. For example
virtualenv [https://virtualenv.pypa.io/] can be used to create an
isolated environment with all the dependencies of a python
application, including the version of the python runtime itself. This
is a lightweight way of creating portable pipelines.

Popper pipelines automate and create an explicit record of the steps
that need to be followed in order to create these isolated
environments. For an example of a pipeline of this kind, see here.

For pipelines that execute programs written in statically typed
languages (e.g. C++), these types of tools are not a good fit and
other “full system” virtualization solutions such as Docker or Vagrant
might be a better alternative. For an example of such a pipeline, see
here [https://github.com/popperized/nwp-popper].

CI systems

Continuous Integration
(CI) [https://en.wikipedia.org/wiki/Continuous_integration] is a
development practice where developers integrate and deploy code
frequently with the purpose of catching errors as early as possible.
The pipelines associated to an article can benefit from using CI
services [https://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software].
If the output of a pipeline can be verified and validated by codifying
any expectation, in the form of a unit test (a command returning a
boolean value), this can be tested on every change to pipeline
scripts.

Travis CI [https://travis-ci.org/] is an open-source, hosted,
distributed continuous integration service used to build and test
software projects hosted at GitHub. Alternatives to Travis CI are
CircleCI [https://circleci.com] and CodeShip [https://codeship.com].
Other self-hosted solutions exist such as
Jenkins [http://jenkins-ci.org]. Each of these services require users
to specify and automate tests using their own configuration files (or
domain specific languages).

Popper can be seen as a service-agnostic way of automating the
execution of a pipeline on CI services with minimal effort. The
popper ci command generates configuration
files that a CI service reads in order
to execute a pipeline. Additionally, Popper can be used to test a
pipeline locally. Lastly, since
the concept of a pipeline and validations associated to them is a
first-class citizen in Popper, we can not only check that a pipeline
can execute correctly (SUCCESS or FAIL statuses) but we can also
verify that the output is the one expected by the original
implementers as explained
here (GOLD
status).

Reprozip / Sciunit

Reprozip [https://www.reprozip.org/] “allows you to pack your
research along with all necessary data files, libraries, environment
variables and options”, while Sciunit [https://sciunit.run] “are efficient,
lightweight, self-contained packages of computational experiments that
can be guaranteed to repeat or reproduce regardless of deployment
issues”. They accomplish this by making use of
ptrace [https://en.wikipedia.org/wiki/Ptrace] to track all
dependencies of an application. Popper can help in automating the tasks
required to install these tools; create and execute
Reprozip packages and Sciunits; and re-execute experiments in order
to verify that results are being reproduced.

CLI feautures

New pipeline initialization

Create a Git repository:

mkdir mypaper
cd mypaper
git init
echo '# mypaper' > README.md
git add .
git commit -m 'first commit'

Initialize the popper repository and add the configuration file to git:

popper init
git add .
git commit -m 'adds .popper.yml file'

Initialize pipeline using init (scaffolding):

popper init myexp

Show what this did:

ls -l pipelines/myexp

Commit the “empty” pipeline:

git add pipelines/myexp
git commit -m 'adding myexp scaffold'

Executing a pipeline

To automatically run a pipeline:

popper run myexp

or to execute all the pipelines in a project:

popper run

Once a pipeline is run, one can show the logs:

ls -l pipelines/myexp/popper/host

For more on the execution logic, see
here.

Specifying environment requirements

The require subcommand can be used to specify expectations on the
environment, in particular, the availability of certain environment
variables and binary commands. To specify that a variable is required,
the following can be done:

popper require --env VARIABLE_NAME

and for commands:

popper require --binary command-name

In either case, the popper run command will check, prior to
executing a pipeline, the existence of these and will proceed
according to the value given to the --requirement-level flag of the
run subcommand. By default, the execution fails if a dependency is
missing.

Reusing existing pipelines

Many times, when starting an experiment, it is useful to be able to use
existing pipelines as scaffolding for the operations we wish to make. The
Popperized [https://github.com/popperized] GitHub organization exists as a
curated list of existing Popperized experiments and examples, for the purpose
of both learning and scaffolding new projects. Additionally, the CLI includes
capabilities easily sift through and import these pipelines.

Searching for existing pipelines

The Popper CLI is capable of searching for premade and template pipelines that
you can modify for your own uses. You can use the popper search command to
find pipelines using keywords. For example, to search for pipelines that use
docker you can simply run:

$ popper search docker
[####################################] Searching in popperized | 100%

Search results:

> popperized/popper-readthedocs-examples/docker-data-science

> popperized/swc-lesson-pipelines/docker-data-science

By default, this command will look inside the
Popperized [https://github.com/popperized] GitHub organization but you
can configure it to search the GitHub organization or repository of your choice
using the popper search --add <org-or-repo-name> command. If you’ve added
more organizations, you may list them with popper search --ls, or remove one
with popper search --rm <org-or-repo-name>

Additionally, when searching for a pipeline, you may choose to include the
contents of the readme in your search if you wish by providing the additional
--include flag to popper search.

Importing existing pipelines

Once you have found a pipeline you’re interested in importing, you can use
popper add plus the full pipeline name to add the pipeline to the popperized
project:

$ popper add popperized/popper-readthedocs-examples/docker-data-science
Downloading pipeline docker-data-science as docker-data-science...
Updating popper configuration...
Pipeline docker-data-science has been added successfully.

This will download the contents of the repo to your project tree and register
it in your .popper.yml configuration file. If you want to add the pipeline
inside a different folder, you can also specify that in the popper add
command:

$ popper add popperized/popper-readthedocs-examples/docker-data-science docker-pipeline
Downloading pipeline docker-data-science as docker-pipeline...
Updating popper configuration...
Pipeline docker-pipeline has been added successfully.

$ tree
mypaper
└── pipelines
 └── docker-pipeline
 ├── README.md
 ├── analyze.sh
 ├── docker
 │ ├── Dockerfile
 │ ├── app.py
 │ ├── generate_figures.py
 │ └── requirements.txt
 ├── generate-figures.sh
 ├── results
 │ ├── naive_bayes.png
 │ ├── naive_bayes_results.csv
 │ ├── svm_estimator.png
 │ └── svm_estimator_results.csv
 └── setup.sh

You can also tell popper add to instead pull the pipeline from another git
branch by optionally providing the --branch <branch-name> option to the
command.

Continuously validating a pipeline

The ci subcommand generates configuration files for multiple CI
systems. The syntax of this command is the following:

popper ci --service <name>

Where <name> is the name of CI system (see popper ci --help to get
a list of supported systems). In the following, we show how to link
github with some of the supported CI systems. In order to do so, we
first need to create a repository on github and upload our commits:

set the new remote
git remote add origin <your-github-repo-url>

verify the remote URL
git remote -v

push changes in your local repository up to github
git push -u origin master

TravisCI

For this, we need an account at Travis CI [http://travis-ci.org].
Assuming our Popperized repository is already on GitHub, we can enable
it on TravisCI so that it is continuously validated (see
here [https://docs.travis-ci.com/user/getting-started/] for a guide).
Once the project is registered on Travis, we proceed to generate a
.travis.yml file:

cd my-popper-repo/
popper ci --service travis

And commit the file:

git add .travis.yml
git commit -m 'Adds TravisCI config file'

We then can trigger an execution by pushing to GitHub:

git push

After this, one go to the TravisCI website to see your pipelines being
executed. Every new change committed to a public repository will
trigger an execution of your pipelines. To avoid triggering an
execution for a commit, include a line with [skip ci] as part of the
commit message.

NOTE: TravisCI has a limit of 2 hours, after which the test is
terminated and failed.

CircleCI

For CircleCI [https://circleci.com/], the procedure is similar to
what we do for TravisCI (see above):

	Sign in to CircleCI using your github account and enable your
repository.

	Generate config files and add them to the repo:

cd my-popper-repo/
popper ci --service circle
git add .circleci
git commit -m 'Adds CircleCI config files'
git push

GitLab-CI

For GitLab-CI [https://about.gitlab.com/features/gitlab-ci-cd/], the
procedure is similar to what we do for TravisCI and CircleCI (see
above), i.e. generate config files and add them to the repo:

cd my-popper-repo/
popper ci --service gitlab
git add .gitlab-ci.yml
git commit -m 'Adds GitLab-CI config file'
git push

If CI is enabled on your instance of GitLab, the above should trigger
an execution of the pipelines in your repository.

Jenkins

For Jenkins [https://jenkinsci.org], generating a Jenkinsfile is
done in a similar way:

cd my-popper-repo/
popper ci --service jenkins
git add Jenkinsfile
git commit -m 'Adds Jenkinsfile'
git push

Jenkins is a self-hosted service and needs to be properly configured
in order to be able to read a github project with a Jenkinsfile in
it. The easiest way to add a new project is to use the Blue Ocean
UI [https://jenkins.io/projects/blueocean/]. A step-by-step guide on
how to create a new project using the Blue Ocean UI can be found
here [https://jenkins.io/doc/book/blueocean/creating-pipelines/]. In
particular, the New Pipeline from a Single Repository has to be
selected (as opposed to Auto-discover Pipelines).

As part of our efforts, we provide a ready-to-use Docker image for
Jenkins with all the required dependencies. We also
host an instance of this image at http://ci.falsifiable.us and allow
anyone to make use of this Jenkins server.

For more on the CI concept, see here. For a detailed explanation
on all the CI features, see here. And for
In this case, as opposed

Testing Locally

The
PopperCLI [https://github.com/systemslab/popper/tree/master/popper]
tool includes a run subcommand that can be executed to test
locally. This subcommand is the same that is executed by the PopperCI
service, so the output of its invocation should be, in most cases, the
same as the one obtained when PopperCI executes it. This helps in
cases where one is testing locally. To execute test locally:

cd my/paper/repo
popper run myexperiment

[####################################] None

status: SUCCESS

The status of the execution, as well as the stdout and stderr output for
each stage is stored in the popper/host directory inside your pipeline. In
addition to the host directory, a new directory will be created for every
environment you set your pipeline to run on.

popper/host
├── popper_status
├── post-run.sh.err
├── post-run.sh.out
├── run.sh.err
├── run.sh.out
├── setup.sh.err
├── setup.sh.out
├── teardown.sh.err
├── teardown.sh.out
├── validate.sh.err
└── validate.sh.out

These files are added to the
.gitignore [https://help.github.com/articles/ignoring-files/] file
so they won’t be committed to the git repository when doing git add.
To quickly remove them, one can clean the working tree:

get list of files that would be deleted
include directories (-d)
include ignored files (-x)
git clean -dx --dry-run

remove --dry-run and add --force to actually delete files
git clean -dx --force

Execution timeout

By default, popper run will set a timeout on the execution of your
pipelines. You may modify the timeout using the --timeout option,
in the form of popper run --timeout 600s. You can also disable
the timeout altogether by setting --timeout to 0.

Popper Badges

We maintain a badging service that can be used to keep track of the
status of a pipeline.

[image: Badging service.]

Badges are commonly used to denote the status of a software project
with respect to certain aspect, e.g. whether the latest version can be
built without errors, or the percentage of code that unit tests cover
(code coverage). Badges available for Popper are shown in the above
figure. If badging is enabled, after the execution of a pipeline, the
status of a pipeline is recorded in the badging server (hosted at
http://badges.falsifiable.us), which keeps track of the status for
every revision of a Popperized project. To retrieve the history for a
Popper repo:

popper badge --history

A link to the badge can be included in the README.md page of a
project, which is displayed on the web interface of the version
control system (GitHub, GitLab, etc.). The CLI tool can generate the
link automatically:

popper badge --service popper

Which prints to stdout the text that should be added to the
README.md file of the project. If the --inplace flag is used, the
link is added to the README.md file.

Visualizing a pipeline

Popper gives a user the ability to visualize the workflow of a pipeline using the
popper workflow pipeline_name command. The command generates a workflow diagram
corresponding to a Popper pipeline, in the .dot format. The string defining
the graph is printed to stdout so it can be piped into other tools.
For example,to generate a png file, one can make use of the graphviz CLI tools:

popper workflow mypipe | dot -T png -o mypipe.png.

Suppose you want to visualize the co2-emissions [https://github.com/popperized/swc-lesson-pipelines/tree/master/pipelines/co2-emissions] pipeline.
Assuming that this pipeline is added to your repository (as explained ini
Searching and Importing pipelines,
you need to type:

popper workflow co2-emissions | dot -T png -o co2_workflow.png

This will lead to the generation of the following dot graph:

[image:]

Adding metadata to a project

Metadata to a project can be added using the metadata command, which
adds a key-value pair to the repository (to the .popper.yml file).
For example:

popper metadata --add author='Jane Doe'

The above adds the metadata item author to the project. To retrieve
the list of keys:

popper metadata

And one removes a key by doing:

popper metadata --rm author

Archiving and DOI generation

Currently the Popper CLI tool integrates with archival services Zenodo
and FigShare for uploading the contents of the repository. This is
useful for archiving data that is not part of the Git repository
(usually due to it being too big). In addition, these services provide
the ability of obtaining a DOI for the archive associated to the
project.

Zenodo

The first step is to create an account on Zenodo and generate an API token.
Follow these steps (taken from
here [http://developers.zenodo.org/#creating-a-personal-access-token]):

	Register [https://zenodo.org/signup] for a Zenodo account if you
don’t already have one.

	Go to your
Applications [https://zenodo.org/account/settings/applications/],
to create a new
token [https://zenodo.org/account/settings/applications/tokens/new/].

	Select the OAuth scopes you need (you need at least
deposit:write and deposit:actions).

Now add a set of minimal metadata (required by Zenodo, otherwise
uploading will fail).

popper metadata --add title='<Your Title>'
popper metadata --add author1='<First Last, first.last@gmail.com, Affiliation>'
popper metadata --add abstract='<A short description of the your repo>'
popper metadata --add keywords='<comma, separated, keywords>'

Now use the popper archive command to perform the archiving.

popper archive --service zenodo

Enter the token obtained when prompted. Alternatively, this command
checks the environment for a POPPER_ZENODO_API_TOKEN variable and,
if available, uses it to authenticate with the service.

By default, the archive command will only upload the snapshot of the
project but will not publish it. In order to publish and generate a
DOI for the archive, pass the --publish flag to the archive
command:

popper archive --service zenodo --publish

A URL containing the DOI will be printed to the terminal.

FigShare

Create a personal token using the following steps:

	Go to https://figshare.com and create a new account.

	Go to the Applications [https://figshare.com/account/applications]
section of your profile and in the bottom click on Create Personal Token.

	Keep the token safe for use in the next step.

Now add the list of minimal metadata entries (required by FigShare,
otherwise uploading will fail).

popper metadata --add title='Popper test archive'
popper metadata --add author1='Test Author, testauthor@gmail.com, popper'
popper metadata --add abstract='A short description of the article'
popper metadata --add keywords='comma, separated, keywords'
popper metadata --add categories='1656'

After this, the popper archive command is used to perform the
archiving.

popper archive --service figshare

Enter the token obtained when prompted. Alternatively, this command
checks the environment for a POPPER_FIGSHARE_API_TOKEN variable and,
if available, uses it to authenticate with the service.

By default, the archive command will only upload the snapshot of the
project but will not publish it. In order to publish and generate a
DOI for the archive, pass the --publish flag to the archive
command:

popper archive --service figshare --publish

A URL containing the DOI will be printed to the terminal.

The popper.yml configuration file

The popper command reads the .popper.yml file in the root of a
project to figure out how to execute pipelines. While this file can be
manually created and modified, the popper command makes changes to
this file depending on which commands are executed.

The project folder we will use as example looks like the following:

$> tree -a -L 2 my-paper
my-paper/
├── .git
├── .popper.yml
├── paper
└── pipelines
 ├── analysis
 └── data-generation

That is, it contains three pipelines named paper,data-generation
and analysis. The .popper.yml for this project looks like:

metadata:
 access_right: open
 license: CC-BY-4.0
 publication_type: article
 upload_type: publication

pipelines:
 paper:
 envs:
 - host
 path: paper
 stages:
 - build
 data-generation:
 envs:
 - host
 path: pipelines/data-generation
 stages:
 - first
 - second
 - post-run
 - validate
 - teardown
 analysis:
 envs:
 - host
 path: pipelines/analysis
 stages:
 - run
 - post-run
 - validate
 - teardown

popperized:
 - github/popperized

At the top-level of the YAML file there are entries named pipelines,
metadata and popperized.

Pipelines

The pipelines YAML entry specifies the details for all the available
pipelines. For each pipeline, there is information about:

	the environment(s) in which the pipeline is be executed.

	the path to that pipeline.

	the various stages that are present in it.

The special paper pipeline is generated by executing popper init paper and has by default a single stage named build.sh.

envs

The envs entry in .popper.yml specifies the environment in which a
pipeline is executed as part of the popper run command. By default,
a pipeline runs on the host, i.e. the same environment where the
popper command runs. By leveraging Docker, a pipeline can run on an
environment different to the host. The list of available environments
can be shown by running:

popper env --ls

By default, the host is the registered environment when running
popper init. The --env flag of the init subcommand can be used
to specify another environment. For example:

popper init mypipe --env=alpine-3.4

The above specifies that the pipeline named mypipe will be executed
inside a docker container using the falsifiable/popper:alpine-3.4
image.

To add more environment(s):

popper env mypipe --add ubuntu-xenial,centos-7.2

To deregister an environment:

popper env mypipe --rm centos-7.2

Arbitrary images can be specified. The only requirement from the point
of view of Popper is that they must have popper installed in the
image. For example:

popper env mypipe --add my-docker-repo/image-with-popper-inside

stages

The stages YAML entry specifies the sequence of stages that are
executed by the popper run command. By default, the popper init
command generates scaffold scripts for setup.sh, run.sh,
post-run.sh, validate.sh, teardown.sh. If any of those are not
present when the pipeline is executed using popper run, they are
just skipped (without throwing an error). At least one stage needs to
be executed, otherwise popper run throws an error.

If arbitrary names are desired for a pipeline, the --stages flag of
the popper init command can be used. For example:

popper init arbitrary_stages \
 --stages 'preparation,execution,validation'

The above line generates the configuration for the arbitrary_stages
pipeline showed in the example.

Metadata

The metadata YAML entry specifies a set of key-value pairs that
describes and gives us information about a project.

By default, a project’s metadata will be initialized with the
following key-value pairs:

$> popper metadata

access_right: open
license: CC-BY-4.0
publication_type: article
upload_type: publication

A custom key-value pair can be added using the
popper metadata --add KEY=VALUE command.
For example:

popper metadata --add year=2018

This adds a metadata entry ‘year’ to the metadata.
The metadata will now look like:

access_right: open
license: CC-BY-4.0
publication_type: article
upload_type: publication
year: '2019'

To remove the entry ‘year’ from the metadata,
the popper metadata --rm KEY command can be used
as show below:

popper metadata --rm year

Popperized Repositories and Organizations

The popperized YAML entry specifies the list of Github organizations
and repositories that contain popperized pipelines. By default, it
points to the github/popperized organization. This list is used to
look for pipelines as part of the popper search command.

CI features

Popper can be used to apply a CI service-agnostic approach to
automating the execution of pipelines. The popper ci command
generates configuration files that a
CI service reads in order to execute a pipeline. This section
describes this functionality. For more information on how to link your
project to a CI service and how to test locally, check
here.

Execution logic

When popper run is invoked, each pipeline is executed in
alpha-numerical order. When a pipeline runs, each of the stages is
executed in the order specified by the --stages flag of the init
command; the stages command; or by manually editing the
.popper.yml file.

The following is the list of high-level tasks that are executed when a
pipeline is executed:

	If specified, environmental requirements are checked. See
here for
more.

	For every pipeline, sequentially invoke all the scripts for all
the defined stages of the pipeline.

	After the pipeline finishes, if a validate.sh script is defined,
its output gets parsed. The validate.sh script should print to
standard output one line per validation, denoting whether a
validation passed or not. In general, the form for validation
results is [true|false] <statement>, for example:

[true] algorithm A outperforms B
[false] network throughput is 2x the IO bandwidth

	Keep track of every pipeline and report their status.

There are three possible values for the status of a pipeline: FAIL,
SUCCESS and GOLD. When a pipeline does not run to completion (i.e.
one of the stages failed), the status of the pipeline is FAIL. When
the pipeline status’ is GOLD, the status of all validations is
true. When all the stages of a pipeline run successfully but one or
more validations fail (the status of one or more validations is
false), the status of a pipeline is SUCCESS.

When multiple pipelines are executed, the lowest status among all the
pipelines is reported by the popper run command, with FAIL being
the lowest and GOLD the highest.

Skipping stages

The popper run command has a --skip argument that can be used to
execute a pipeline in multiple steps. So for example, assuming we have
a pipeline with the following scripts: setup, run, post-run and
validate, we can run:

popper run --skip post-run,validate

Which runs the first part (setup and execution). Then, later we can
either manually check whether the run stage is done or automate this
task in the post-run script. In either way, we would then run:

popper run --skip setup,run

and the above will just execute the second half of the pipeline.

Specifying which pipelines to run

By default, the run subcommand will try to run all the pipelines in
a project, unless the current working directory is the folder
containing a pipeline. Alternatively, the run subcommand takes as
argument the name of a pipeline. For example:

cd my-popper-repo
popper run

The above runs all the pipelines in a repository. While the following
runs only the pipeline named my-pipe.

cd my-popper-repo
popper run my-pipe

or alternatively:

cd my-popper-repo
cd pipelines/my-pipe
popper run

Specifying which pipelines to run via commit messages

The previous subsection applies when popper run is invoked directly
on a shell. However, when a CI service executes a pipeline, it does so
by invoking popper run on the CI server, without passing any
arguments or flags, and thus we cannot specify which pipelines to
execute or skip. To make this more flexible, the ci command provides
the ability to control which pipelines are executed by looking for
special keywords in commit messages.

The popper:whitelist[<list>] keyword can be used in a commit message
to specify which pipelines to execute. For example:

An example commit message

This is a sample commit message that shows how we can request the
execution of a particular pipeline.

popper:whitelist[my-pipe]

The above commit message specifies that the pipeline my-pipe is to
be executed and any other pipeline will be skipped. A comma-separated
list of pipeline names can be given in order to request the execution
of more then one pipeline. A skip list is also supported with the
popper:skip[<list>] keyword.

Execution environments

By default, a pipeline runs on the same environment where the popper
command is being executed. In certain cases, it is useful to run a
pipeline on a different environment. Popper leverages Docker to
accomplish this. For more on how to define and remove environments,
see here. For each environment, an output
log folder is created. For example, the following pipeline 2-stage
pipeline:

pipelines:
 my-pipe:
 path: pipelines/my-pipe
 envs:
 - host
 - debian-9
 stages:
 - one
 - two

Results in the logs folder in pipelines/my-pipe/popper to have the
following structure:

$ tree pipelines/my-pipe/popper
pipelines/my-pipe/popper
├── debian-9
│ ├── popper_status
│ ├── one.sh.err
│ ├── one.sh.out
│ ├── two.sh.err
│ └── two.sh.out
└── host
 ├── popper_status
 ├── one.sh.err
 ├── one.sh.err
 ├── two.sh.err
 └── two.sh.out

That is, there is one folder for each distinct environment. The status
of the pipeline reported by popper run is the lowest status from all
the executions, with FAIL being the lowest and GOLD the highest.

Specifying arguments for docker run

A Docker environment image is instantiated with the following command:

docker run --rm \
 --volume /path/to/project:/path/to/project \
 --workdir /path/to/project/path/to/pipeline \
 <popper-docker-image> \
 popper run <flags> <arg>

Where <popper-docker-image> is an image with Popper available inside
of it. The project folder is shared with the container and the
pipeline folder is the working directory. To specify other flags to
the docker run command, the --argument flag of the env command
can be used. For usage, type popper env --help.

Parametrizing pipelines

A pipeline can be parametrized so that it can be executed multiple
times, taking a distinct set of parameters each time. Parameters are
specified with the parameters subcommand and are given in the form
of environment variables. For example, if a pipeline takes parameters
par1 and par2, the following can specify these:

popper parameters my-pipe --add par1=val1 --add par2=val2

This will cause the .popper.yml to look like the following:

pipelines:
 my-pipe:
 envs:
 - host
 stages:
 - one
 - two
 parameters:
 - { par1: val1, par2: val2 }

Each new set of parameters results in a dictionary of key-value pairs,
where each item in the dictionary is an environment variable. A
subsequent set of parameters can be added:

popper parameters my-pipe --add par1=val3 --add par2=val4

Which will result in the following:

pipelines:
 my-pipe:
 envs:
 - host
 stages:
 - one
 - two
 parameters:
 - par1: val1
 par2: val2
 - par1: val3
 par2: val4

The above results in executing this same pipeline two times, defining
environment variables par1 and par2, with these 2 sets of values,
every time it runs. We refer to each execution in a parametrized
pipeline as a Job. In this example we will have 2 jobs every time
the pipeline runs.

When a parametrized pipeline is executed, a subfolder for each job is
created. For example, the 2-job pipeline specified above results in
the following folder structure:

$ tree pipelines/your-popper-pipeline/popper
pipelines/your-popper-pipeline/popper
└── host
 ├── 0
 │ ├── popper_status
 │ ├── one.sh.err
 │ ├── one.sh.out
 │ ├── two.sh.err
 │ └── two.sh.out
 └── 1
 ├── popper_status
 ├── one.sh.err
 ├── one.sh.out
 ├── two.sh.err
 └── two.sh.out

Subfolders are numbered (starting from 0), where each ID corresponds
to the position of the set of parameters in the parameters list. So
the run 0 above corresponds to par1=val1,par2=val2 and 1 to
par1=val3,par2=val4.

Matrix Executions

Combining Execution environments with Parameters results in a
bi-dimensional matrix of jobs. For example, the following pipeline:

pipelines:
 my-pipe:
 envs:
 - host
 - debian-9
 stages:
 - one
 - two
 parameters:
 - par1: val1
 par2: val2
 - par1: val3
 par2: val4

Results in the following folder structure for the popper/ logs
folder:

$ tree pipelines/your-popper-pipeline/popper
pipelines/your-popper-pipeline/popper
├── debian-9
│ ├── 0
│ │ ├── popper_status
│ │ ├── one.sh.err
│ │ ├── one.sh.out
│ │ ├── two.sh.err
│ │ └── two.sh.out
│ └── 1
│ ├── popper_status
│ ├── one.sh.err
│ ├── one.sh.out
│ ├── two.sh.err
│ └── two.sh.out
└── host
 ├── 0
 │ ├── popper_status
 │ ├── one.sh.err
 │ ├── one.sh.out
 │ ├── two.sh.err
 │ └── two.sh.out
 └── 1
 ├── popper_status
 ├── one.sh.err
 ├── one.sh.out
 ├── two.sh.err
 └── two.sh.out

Popper Badges

See here.

Examples

In this section we present a examples of Popper pipelines. All these
are available on github and can be added to a local repo by doing:

popper add popperized/<repo>/<pipeline>

Where <repo> is the name of the repository where a pipeline is
contained, and <pipeline> is the name of the pipeline.

Pipeline portability

	Using Virtualenv (Python) [https://github.com/popperized/swc-lesson-pipelines/tree/master/pipelines/sea-surface-mapping] (and also here [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/validator]).

	Using Packrat (R) [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/sea-surface-mapping-r].

	Using Spack [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/mpip].

	Using Docker [https://github.com/popperized/swc-lesson-pipelines/tree/master/pipelines/docker-data-science].

	Using Vagrant [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/vagrant-linux].

Dataset Management

	Using Datapackages [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/datapackage].

	Using data.world [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/data-world].

Infrastructure automation

	On CloudLab using geni-lib [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/cloudlab-benchmarking].

	On Chameleon using enos [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/chameleon-benchmarking].

	On Google Compute Platform using terraform [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/gce-benchmarking].

Domain-specific pipelines

	Atmospheric science [https://github.com/popperized/nwp-popper].

	Applied math [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/blis].

	Machine learning [https://github.com/popperized/swc-lesson-pipelines/tree/master/pipelines/docker-data-science].

	Linux kernel development [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/vagrant-linux].

	Relational databases [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/pgbench].

	Genomics [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/genomics].

	High Performance Computing [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/mpip].

	Computational Neuroscience [https://github.com/popperized/open-comp-rsc-popper].

Coming soon:

	Distributed file systems

	High energy physics

Results Validation

	Statistical validations [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/validator].

	Bitwise image comparison [https://github.com/popperized/swc-lesson-pipelines/tree/master/pipelines/docker-data-science].

Pipeline Parametrization

	Using environment variables [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/envvar-param]

	Using baseliner [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/cloudlab-benchmarking].

Provenance and automatic dependency resolution

	Using Sumatra [https://github.com/popperized/open-comp-rsc-popper]

	Sci-Unit [https://github.com/popperized/sciPopper]

Coming soon:

	ReproZip

Other Resources

Automated Artifact Evaluation

A growing number of Computer Science conferences and journals
incorporate an artifact evaluation process in which authors of
articles submit artifact
descriptions [http://ctuning.org/ae/submission.html] that are tested
by a committee, in order to verify that experiments presented in a
paper can be re-executed by others. In short, an artifact description
is a 2-3 page narrative on how to replicate results, including steps
that detail how to install software and how to re-execute experiments
and analysis contained in a paper.

An alternative to the manual creation and verification of an Artifact
Description (AD) is to use a continuous integration (CI) service such
as GitLab-CI or Jenkins. Authors can make use of a CI service to
automate the experimentation pipelines associated to a paper. By doing
this, the URL pointing to the project on the CI server that holds
execution logs, as well as the repository containing all the
automation scripts, can serve as the AD. In other words, the
repository containing the code for experimentation pipelines, and the
associated CI project, serve both as a “self-verifiable AD”. Thus,
instead of requiring manually created ADs, conferences and journals
can request that authors submit a link to a code repository (Github,
Gitlab, etc.) where automation scripts reside, along with a link to
the CI server that executes the pipelines.

While automating the execution of a pipeline can be done in many ways,
in order for this approach to serve as an alternative to ADs, there
are five high-level tasks that pipelines must carry out in every
execution:

	Code and data dependencies. Code must reside on a version control
system (e.g. github, gitlab, etc.). If datasets are used, then
they should reside in a dataset management system (datapackage,
gitlfs, dataverse, etc.). The experimentation pipelines must
obtain the code/data from these services on every execution.

	Setup. The pipeline should build and deploy the code under test.
For example, if a pipeline is using containers or VMs to package
their code, the pipeline should build the container/VM images
prior to executing them. The goal of this is to verify that all
the code and 3rd party dependencies are available at the time a
pipeline runs, as well as the instructions on how to build the
software.

	Resource allocation. If a pipeline requires a cluster or custom
hardware to reproduce results, resource allocation must be done as
part of the execution of the pipeline. This allocation can be
static or dynamic. For example, if an experiment runs on custom
hardware, the pipeline can statically allocate (i.e. hardcode
IP/hostnames) the machines where the code under study runs (e.g.
GPU/FPGA nodes). Alternatively, a pipeline can dynamically
allocate nodes (using infrastructure automation tools) on
CloudLab, Chameleon, Grid5k, SLURM, Terraform (EC2, GCE, etc.),
etc.

	Environment capture. Capture information about the runtime
environment. For example, hardware description, OS, system
packages (i.e. software installed by system administrators),
remote services (e.g. a scheduler). Many open-source tools can aid
in aggregating this information such as SOSReport or facter.

	Validation. Scripts must verify that the output corroborates the
claims made on the article. For example, the pipeline might check
that the throughput of a system is within an expected confidence
interval (e.g. defined with respect to a baseline obtained at
runtime).

A list of example Popper pipelines meeting the above criteria:

	BLIS
paper [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/blis].
We took an appendix and turned it into executable pipeline.

	HPC Proxy
App [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/mpip].
Runs LULESH linked against MPIp to capture runtime MPI perf
metrics.

	Linux kernel
development [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/linux-cgroups].
Uses a VM to compile, test and deploy Linux.

	Relational database
performance [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/pgbench].
Runs pgbench to compare two versions of postgres.

More examples are listed here.

NOTE: A pipeline can be implemented by any means and does
not need to be implemented using the Popper CLI. While the
examples we link above are of Popper pipelines, this subsection has
the intention to apply, in general, to any type of automated
approach. Our intention is to define, in written form, the criteria
for Automated Artifact Evaluation.

CI Infrastructure for Automated Artifact Evaluation

We have an instance of Jenkins running at http://ci.falsifiable.us,
maintained by members of the Systems Research Lab (SRL) at UC Santa
Cruz. Detailed instructions on how to create an account on this
service and how to use it is available
here [https://popper.readthedocs.io/en/latest/ci/jenkins.html] (also
includes instructions on how to self-host it). This service allows
researchers and students to automate the execution and validation of
experimentation pipelines without happing to deploy infrastructure of
their own.

Self-paced Tutorial

A hands-on, self-paced tutorial is available
here [https://popperized.github.io/swc-lesson].

FAQ

How can we deal with large datasets? For example I have to work on large data of hundreds GB, how would this be integrated into Popper?

For datasets that are large enough that they cannot be managed by Git,
solutions such as a PFS, GitLFS, Datapackages, ckan, among others
exist. These tools and services allow users to manage large datasets
and version-control them. From the point of view of Popper, this is
just another tool that will get invoked as part of the execution of a
pipeline. As part of our documentation, we have examples on how to use
datapackages, and another on how to use data.world.

How can Popper capture more complex workflows? For example, automatically restarting failed tasks?

A Popper pipeline is a simple sequence of bash scripts. Popper is not
a replacement for scientific workflow engines, instead, its goal is to
capture the highest-most workflow: the human interaction with a
terminal. For more on this, please take a look at the Popper vs.
other software section of
our documentation.

Can I follow Popper in computational science research, as opposed to computer science?

Yes, the goal for Popper is to make it a domain-agnostic
experimentation protocol. Examples of how to follow Popper on distinct
domains: atmospheric
science [https://github.com/popperized/nwp-popper], computational
neuroscience [https://github.com/popperized/open-comp-rsc-popper],
genomics [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/genomics]
and applied
math [https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/blis].

How to apply the Popper protocol for applications that take large quantities of computer time?

The popper run command has a --skip argument that can be used to
execute a pipeline in multiple steps. See
here for more information.

Another practice we have been following is to have a specific set of
parameters for the pipeline with the goal of running a smaller scale
simulation/analysis. The idea is to use this when running on a CI
service such as Travis [https://travis-ci.org] in order to test the
entire pipeline in a relatively short amount of time (Travis times out
jobs after 3 hours). So this ends up looking something like
this [https://github.com/ivotron/quiho-popper/blob/master/pipelines/single-node/setup.sh],
i.e. a conditional in a stage that, depending on the environment (in
this case a CI variable defined), the parametrization and setup is
different, but the rest of the pipeline runs in the same fashion.
While this approach doesn’t really executes the actual original
simulation, at least it lets us test the integrity of the scripts.

Contributing

Code of Conduct

Anyone is welcome to contribute to Popper! To get started, take a look
at our contributing guidelines, then dive in with
our list of good first
issues [https://github.com/systemslab/popper/issues?utf8=%E2%9C%93&q=is%3Aissue+label%3A%22good+first+issue%22+is%3Aopen]
and open projects [https://github.com/systemslab/popper/projects].

Popper adheres to the code of conduct posted in this
repository. By participating or contributing to
Popper, you’re expected to uphold this code. If you encounter
unacceptable behavior, please immediately email
us.

Contributing CLI features

To contribute new CLI features:

	Add a new issue [https://github.com/systemslab/popper/issues/new] describing the feature.

	Fork the official repo [https://github.com/systemslab/popper] and implement the issue on a
new branch.

	Add tests for the new feature. We test the popper CLI command
using Popper itself. The Popper pipeline for testing the popper
command is available
here [https://github.com/systemslab/popper/blob/master/ci/].

	Open a pull request against the master branch.

Contributing example pipelines

We invite anyone to implement (and document) Popper pipelines
demonstrating the use of a DevOps tool, or how to apply Popper in a
particular domain. Implementing a new example is done in two parts.

Implement the pipeline

A popper pipeline is implemented by following the convention. See the
Concepts and Examples section for
more.

Once a pipeline has been implemented, it needs to be uploaded to
github, gitlab or any other repo publicly available. We use the
organization https://github.com/popperized to host examples
developed by the Popper team and collaborators. Pipelines on this
organization are available by default to the popper search
command, so users can add it easily to their repos (using popper add). To add a repository containing one or more pipelines to this
organization, please first create the repository on GitHub under an
organization you own and then do one of the following:

	Transfer ownership of the repo to the popperized organization.

	Open an issue [https://github.com/systemslab/popper/issues/new] requesting the repository to be forked or
mirrored. NOTE: forks and mirrors need to be updated manually
in order to reflect changes done on the base/upstream repository.

Document the pipeline

We encourage contributors to document pipelines by adding them to our
list of examples. To add new documentation:

	Fork the official repo [https://github.com/systemslab/popper].

	Add a new item on the
docs/sections/examples.md [https://github.com/systemslab/popper/blob/master/docs/sections/examples.md]
file.

	Open pull request against the master branch.

Index

NOTE: Adapted from Kate Keahey’s guidelines

Each article consists of two parts:

	free form explanation (few paragraphs). This will answer:

	What domain does this pertains? What problem is being solved?

	How does the contribution (e.g. concepts, code, guidelines,
etc) help readers?

	What dependencies does it have and how should users use it?

	Optional: are there specific ideas, contributions, or
resources that you would like to acknowledge?

	Anything else you feel is relevant

	meta-data.

	type of contribution:

	pipeline

	software

	experience

	other

	author(s)

	link to code/repository

	license/terms of use

	link to documentation

	dependencies:

	tools (e.g. docker, vagrant, etc.)

	hardware (e.g. machine with GPU or FPGA)

	support email (optional)

	community contacts (e.g., community mailing list):

Tentative schedule

Date	Subject	Author
——	————–	——
07/13	chameleon	Rafa
07/20	GSoC 1	Ankit
07/27	repro/repeat	Ivo
08/03	cloudlab	Fran
08/10		
08/17		
08/24		
08/31		

Self-hosting Jenkins

We describe how to deploy Jenkins using Docker, and how to make use of
the Jenkins instance running at http://ci.falsifiable.us. For more
on how to make add CI configuration files to a repository using
Popper, see
here. For a
detailed description on the CI features available to Popper, see
here.

Jenkins Docker Image

We have created an image with all the plugins necessary to
automatically validate pipelines. To launch an instance of this Docker
image server:

docker run -d --name=jenkins \
 -p 8080:8080 \
 -v jenkins_home:/var/jenkins_home \
 falsifiable/jenkins

The above launches a Jenkins server that can be accessed on port
8080 of the machine where this command was launched (e.g.
localhost:8080 if you did this on your machine).

For more info on how to use this image, take a look at the official
documentation [https://github.com/jenkinsci/docker/blob/master/README.md]
for this image.

ci.falsifiable.us [http://ci.falsifiable.us]

Create an account by clicking the Sign Up link on the top right
corner. After this, you will be able to access the server. Follow the
steps outlined above to generate a Jenkinsfile using the popper
command. Alternatively, create this file manually with the following
contents:

stage ('Popper') {
 node {
 sh "git clone --recursive https://github.com/systemslab/popper /tmp/popper"
 sh "export PATH=$PATH:/tmp/popper/cli/bin"
 sh "export PYTHONUNBUFFERED=1"
 }
}

Then, follow this step-by-step
guide [https://jenkins.io/doc/book/blueocean/creating-pipelines/] on
how to create a new project using the Blue Ocean UI.

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/popper_logo.png
alsifiable.us

_images/workflow_devops.png
-

By UL

1 7eStru lext

Analyze/
Visualize

Q-
i ,, 1:\ 'OZ*:*’O I !
y 0'44 [
' Q' T
worklead manage

I DAy pacKAC I I I

I NN ENN ENN NN BN SEE EEN BN S S - L I ————

I npu [

| v i | torpor-popper (branch: master)

| aA L 1 master =1t Q, Subject

I / I Branch Create Branch Search

I 7 I Author Date

| [O ((master)(Corigin/HEAD](origin/master JAdd... lvo Jimenez 2016-10-05...

| [Q Adds torpor as a submodule Ivo Jimenez 2016-08-25...

S —— ® Results of running base-vs-tar... Ivo Jimenez 2016-08-25...

--- MakesuseOf.baselinerlrOIefo"‘ IVOJimeneZ 2016_08-25'“ [o]

O Removes unused line Ilvo Jimenez 2016-08-21...
O Will add later Ilvo Jimenez 2016-08-21...
O Re-adds baseliner ansible role Ilvo Jimenez 2016-08-21...
O renames ansible folder to exper... Ivo Jimenez 2016-08-21...
O benchmarks now have their ow... Ivo Jimenez 2016-08-21...
O Adds latest version of baseliner... Ivo Jimenez 2016-06-12...
O Adds experiment on all stress-... Ivo Jimenez 2016-06-12...
O Adds same-platform variability... Ivo Jimenez 2016-06-10...
O WIP on using baseliner role Ilvo Jimenez 2016-06-10...
O Checks first if docker is already... Ivo Jimenez 2016-05-16...
O Tunning cpu-quota of 5 machines Ivo Jimenez 2016-05-16...
O Fixes creation of parameters an... Ivo Jimenez 2016-05-16...
a i i i i i -

_static/ajax-loader.gif

_images/popper_pipeline_vs_workflow_engine.png
setup.sh

create data volumes

-

™~

docker: cleanup data volumes

docker: create wps_geog data volume

run.sh

docker: create sandy data volume

run WPS/WRF/UPP \

mkdir: create output directories

validate sh

docker: run WPS/WRF/UPP (NWP: pre-proc, model, post-proc) script in docker-space.

Generate output plots and validate using MET

— 4 T

mkdir: create output directories

docker: Run NCL with user scipt

docker: Run MET script in docker-space.

REAL

_images/workflow.png
®ee® ~ experiment.log ~

07/01/2015

Created first version of experiment

07/03/2015

Added new parameters to experiment and obtained first results on workload A,
with metrics that measure performance.

07/04/2015

Analyzed results for workload A, identified the need to incorporate corner cases
to the main algorithm.

[/

07/20/2

Package

Visualize

nav.xhtml

 Table of Contents

 		
 Popper

 		
 Getting Started

 		
 New pipeline

 		
 Popper Run

 		
 Adding Project to GitHub

 		
 Adding Project to Travis

 		
 Concepts

 		
 Scientific Exploration Pipelines

 		
 Popper Pipelines

 		
 Repository Structure

 		
 Pipeline Folder Structure

 		
 Popper vs. Other Software

 		
 Scientific Workflow Engines

 		
 Virtualenv, Conda, Packrat, etc.

 		
 CI systems

 		
 Reprozip / Sciunit

 		
 CLI feautures

 		
 New pipeline initialization

 		
 Executing a pipeline

 		
 Specifying environment requirements

 		
 Reusing existing pipelines

 		
 Searching for existing pipelines

 		
 Importing existing pipelines

 		
 Continuously validating a pipeline

 		
 TravisCI

 		
 CircleCI

 		
 GitLab-CI

 		
 Jenkins

 		
 Testing Locally

 		
 Popper Badges

 		
 Visualizing a pipeline

 		
 Adding metadata to a project

 		
 Archiving and DOI generation

 		
 Zenodo

 		
 FigShare

 		
 The popper.yml configuration file

 		
 Pipelines

 		
 Metadata

 		
 Popperized Repositories and Organizations

 		
 CI features

 		
 Execution logic

 		
 Skipping stages

 		
 Specifying which pipelines to run

 		
 Specifying which pipelines to run via commit messages

 		
 Execution environments

 		
 Specifying arguments for docker run

 		
 Parametrizing pipelines

 		
 Matrix Executions

 		
 Popper Badges

 		
 Examples

 		
 Pipeline portability

 		
 Dataset Management

 		
 Infrastructure automation

 		
 Domain-specific pipelines

 		
 Results Validation

 		
 Pipeline Parametrization

 		
 Provenance and automatic dependency resolution

 		
 Other Resources

 		
 Automated Artifact Evaluation

 		
 CI Infrastructure for Automated Artifact Evaluation

 		
 Self-paced Tutorial

 		
 FAQ

 		
 How can we deal with large datasets? For example I have to work on large data of hundreds GB, how would this be integrated into Popper?

 		
 How can Popper capture more complex workflows? For example, automatically restarting failed tasks?

 		
 Can I follow Popper in computational science research, as opposed to computer science?

 		
 How to apply the Popper protocol for applications that take large quantities of computer time?

 		
 Contributing

 		
 Code of Conduct

 		
 Contributing CLI features

 		
 Contributing example pipelines

 		
 Implement the pipeline

 		
 Document the pipeline

_images/cibadges.png
Run multi-node
experiment on one of
supported backends

e

Trigger
@execution
-LJ _—r_e
Commit * m
@change to @ Validate experiment

experiment results by testing l @ Experiment generates

amazon

webservices

codified assertions on output datasets or
utput runtime metrics

/

and associated status
Popper FAIL to the corresponding
ommit
Popper OK

Popper |GOLD

@Keep track of execution

\o

_images/example_co2_workflow.png
setup

obtain and clean dataset

i

™,

create data folder if it doesn t exist

download dataset from github

run

add zeros to missing per capita column values

obtain n year means

/

group every n years and obtain mean over each group

~

validate

validate results and get a table

-

~

verify that we got actual result values

generate markdown table

_static/up-pressed.png

_static/up.png

