

Popper

Popper is a workflow execution engine based on Github Actions (GHA) that allows
you to execute GHA workflows locally on your machine. Popper workflows are
defined in HCL syntax and behave like GHA workflows. The main difference with
respect to GHA workflows is that, through some extensions to the GHA syntax, a
Popper workflow can execute actions in other runtimes in addition to Docker.

	Getting Started
	Create a Git repository

	Link to GitHub repository

	Create a workflow

	Run your workflow

	Continuously Run Your Workflow on Travis

	CLI feautures
	New workflow initialization

	Executing a workflow

	Environment Variables

	Reusing existing workflows

	Continuously validating a pipeline

	Visualizing workflows

	Extensions
	Downloading actions from arbitrary Git repositories

	Other Runtimes

	Examples

	Other Resources

	FAQ
	How can we deal with large datasets? For example I have to work on large data of hundreds GB, how would this be integrated into Popper?

	How can Popper capture more complex workflows? For example, automatically restarting failed tasks?

	Can I follow Popper in computational science research, as opposed to computer science?

	How to apply the Popper protocol for applications that take large quantities of computer time?

	Contributing
	Code of Conduct

	Contributing CLI features

	Contributing example pipelines

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Popper is a workflow execution engine based on Github
Actions [https://github.com/features/actions] written in Python. With
Popper, you can execute workflows locally on your machine without
having to use Github’s platform. To get started, we first need to
install the CLI tool using Pip [https://pip.pypa.io/en/stable/]:

pip install popper

Show which version you installed:

popper version

NOTE: Any version greater than 2.0 is currently officially
supported.

To get a list of available commands:

popper --help

Create a Git repository

Create a project repository (if you are not familiar with Git, look
here [https://www.learnenough.com/git-tutorial]):

mkdir mypaper
cd mypaper
git init
echo '# mypaper' > README.md
git add .
git commit -m 'first commit'

Link to GitHub repository

First, create a repository on
Github [https://help.github.com/articles/create-a-repo/]. Once your
Github repository has been created, register it as a remote repository
on your local repository:

git remote add origin git@github.com:<user>/<repo>

where <user> is your username and <repo> is the name of the
repository you have created. Then, push your local commits:

git push -u origin master

Create a workflow

We need to create a .workflow file:

popper scaffold

The above generates an example workflow that you can use as the
starting point of your project. We first commit the files that got
generated:

git add .
git commit -m 'Adding example workflow.'
git push

To learn more about how to modify this workflow in order to fit your
needs, please take a look at the official
documentation [https://developer.github.com/actions/managing-workflows/creating-and-cancelling-a-workflow/],
read this
tutorial [https://scotch.io/bar-talk/introducing-github-actions#toc-how-it-works]
or take a look at some examples.

Run your workflow

To execute the workflow you just created:

popper run

You should see the output of actions printed to the terminal.

Continuously Run Your Workflow on Travis

For this, we need to login to Travis
CI [https://docs.travis-ci.com/user/getting-started/#Prerequisites]
using our Github credentials. Once this is done, we activate the
project [https://docs.travis-ci.com/user/getting-started/#To-get-started-with-Travis-CI]
so it is continuously validated.

Generate .travis.yml file:

popper ci --service travis

And commit the file:

git add .travis.yml
git commit -m 'Adds TravisCI config file'

Trigger an execution by pushing to github:

git push

Go to the TravisCI website to see your experiments being executed.

CLI feautures

New workflow initialization

Create a Git repository:

mkdir mypaper
cd mypaper
git init
echo '# mypaper' > README.md
git add .
git commit -m 'first commit'

Initialize the popper repository and add the configuration file to git:

popper init
git add .
git commit -m 'adds .popper.yml file'

Initialize a workflow

popper scaffold

Show what this did:

ls -l

Commit the “empty” pipeline:

git add .
git commit -m 'adding my first workflow'

Executing a workflow

To run the workflow:

popper run

or to execute all the workflows in a project:

popper run --recursive

Environment Variables

Popper defines the same environment variables that are defined by the
official Github Actions
runner [https://developer.github.com/actions/creating-github-actions/accessing-the-runtime-environment/#environment-variables].
To see the values assigned to these variables, run the following
workflow:

workflow "env workflow" {
 resolves = "show env"
}

action "show env" {
 uses = "actions/bin/sh@master"
 args = ["env"]
}

Reusing existing workflows

Many times, when starting an experiment, it is useful to be able to use
an existing workflow as a scaffold for the one we wish to write. The
popper-examples
repository [https://github.com/popperized/popper-examples] contains a
list of example workflows and actions for the purpose of both learning
and to use them as a starting point. Another examples can be found on
Github’s official actions
organization [https://github.com/actions].

Once you have found a workflow you’re interested in importing, you can
use the popper add command to obtain a workflow. For example:

cd myproject/
mkdir myworkflow
popper add https://github.com/popperized/popper-examples/workflows/cloudlab-iperf-test
Downloading workflow data-science as data-science...
Workflow docker-data-science has been added successfully.

This will download the contents of the workflow and all its
dependencies to your project tree.

Continuously validating a pipeline

The ci subcommand generates configuration files for multiple CI
systems. The syntax of this command is the following:

popper ci --service <name>

Where <name> is the name of CI system (see popper ci --help to get
a list of supported systems). In the following, we show how to link
github with some of the supported CI systems. In order to do so, we
first need to create a repository on github and upload our commits:

set the new remote
git remote add origin <your-github-repo-url>

verify the remote URL
git remote -v

push changes in your local repository up to github
git push -u origin master

TravisCI

For this, we need an account at Travis CI [http://travis-ci.org].
Assuming our Popperized repository is already on GitHub, we can enable
it on TravisCI so that it is continuously validated (see
here [https://docs.travis-ci.com/user/getting-started/] for a guide).
Once the project is registered on Travis, we proceed to generate a
.travis.yml file:

cd my-popper-repo/
popper ci --service travis

And commit the file:

git add .travis.yml
git commit -m 'Adds TravisCI config file'

We then can trigger an execution by pushing to GitHub:

git push

After this, one go to the TravisCI website to see your pipelines being
executed. Every new change committed to a public repository will
trigger an execution of your pipelines. To avoid triggering an
execution for a commit, include a line with [skip ci] as part of the
commit message.

NOTE: TravisCI has a limit of 2 hours, after which the test is
terminated and failed.

CircleCI

For CircleCI [https://circleci.com/], the procedure is similar to
what we do for TravisCI (see above):

	Sign in to CircleCI using your github account and enable your
repository.

	Generate config files and add them to the repo:

cd my-popper-repo/
popper ci --service circle
git add .circleci
git commit -m 'Adds CircleCI config files'
git push

GitLab-CI

For GitLab-CI [https://about.gitlab.com/features/gitlab-ci-cd/], the
procedure is similar to what we do for TravisCI and CircleCI (see
above), i.e. generate config files and add them to the repo:

cd my-popper-repo/
popper ci --service gitlab
git add .gitlab-ci.yml
git commit -m 'Adds GitLab-CI config file'
git push

If CI is enabled on your instance of GitLab, the above should trigger
an execution of the pipelines in your repository.

Jenkins

For Jenkins [https://jenkinsci.org], generating a Jenkinsfile is
done in a similar way:

cd my-popper-repo/
popper ci --service jenkins
git add Jenkinsfile
git commit -m 'Adds Jenkinsfile'
git push

Jenkins is a self-hosted service and needs to be properly configured
in order to be able to read a github project with a Jenkinsfile in
it. The easiest way to add a new project is to use the Blue Ocean
UI [https://jenkins.io/projects/blueocean/]. A step-by-step guide on
how to create a new project using the Blue Ocean UI can be found
here [https://jenkins.io/doc/book/blueocean/creating-pipelines/]. In
particular, the New Pipeline from a Single Repository has to be
selected (as opposed to Auto-discover Pipelines).

Visualizing workflows

While .workflow files are relatively simple to read, it is nice to
have a way of quickly visualizing the steps contained in a workflow.
Popper provides the option of generating a graph for a workflow. To
generate a graph for this pipeline, execute the following:

popper dot

The above generates a graph in .dot format. To visualize it, you can
install the graphviz [https://graphviz.gitlab.io/] package and
execute:

popper dot | dot -T png -o wf.png

The above generates a wf.png file depicting the workflow.
Alternatively you can use the http://www.webgraphviz.com/ website to
generate a graph by copy-pasting the output of the popper dot
command.

Extensions

This section describes the extensions Popper brings on top of Github
Actions.

NOTE: These extensions are not supported by the official Github
Actions platform.

Downloading actions from arbitrary Git repositories

The syntax for defining actions in a workflow is the following:

action "IDENTIFIER" {
 needs = "ACTION1"
 uses = "docker://image2"
}

The uses attribute references Docker images, filesystem paths or
github repositories (see syntax
documentation [https://developer.github.com/actions/managing-workflows/workflow-configuration-options/#using-a-dockerfile-image-in-an-action]
for more). In the case where an action references a public repository,
Popper extends the syntax in the following way:

{url}/{user}/{repo}/{path}@{ref}

The {url} can reference any Git repository, allowing workflows to
reference to actions outside of Github. For example:

action "myaction on gitlab" {
 uses = "git@gitlab.com:user/repo/path/to/my/action@master"
}

action "another one on bitbucket" {
 uses = "https://bitbucket.com/user/repo/action@master"
}

The above references actions hosted on Gitlab [https://gitlab.com]
and Bitbucket [https://bitbucket.org], respectively.

Other Runtimes

By default, actions in Popper workflows run in Docker, similarly to
how they run in the Github Actions platform. Popper adds the ability
of running actions in other runtimes by extending the interpretation
of the uses attribute of action blocks.

NOTE: As part of our roadmap, we plan to add support for Vagrant
and Conda runtimes. Open a new
issue [https://github.com/systemslab/popper/issues/new] to request
another runtime you would Popper to support.

Singularity

NOTE: This feature requires Singularity 2.6+.

An action executes in a Singularity container when:

	A singularity image is referenced. For example: shub://myimage
will pull the container from the singularity
hub [https://singularity-hub.org].

	A Singularity file is found in the action folder. For
example, if ./actions/mycontainer is the value of the uses
attribute in an action block, and a Singularity is found,
Popper builds and executes a singularity container.

	A Singularity is found in the public repository of the given
action. If an action resides in a public Git repository, and the
path to the action contains a Singularity file, it will get
executed in Singularity.

Host

There are situations where a container engine is not available and
cannot be installed. In these cases, actions can execute directly on
the host where the popper command is running. If an action folder
does not contain a Dockerfile or Singularity file (be it a local
path or the path in a public repository), the action will be executed
on the host. Popper looks for an entrypoint.sh file and executes it
if found, otherwise an error is thrown. Alternatively, if the action
block specifies a runs attribute, the script corresponding to it is
executed. For example:

action "run on host" {
 uses = "./myactions/onhost"
}

action "another execution on host" {
 uses = "./myactions/onhost"
 runs = "myscript"
}

In the above example, the run on host action is executed by looking
for an entrypoint.sh file on the ./myactions/onhost/ folder. The
another execution on host action will instead execute the myscript
script (located in ./myactions/onhost/).

Another way of executing actions on the host is to use the special
sh value for the uses attribute. For example:

action "run on host" {
 uses = "sh"
 args = ["ls", "-la"]
}

action "another execution on host" {
 uses = "sh"
 runs = "myscript"
 args = "args"
}

The above args ls -la on the root of the repository folder (the
repository storing the .workflow file). This option allows users to
execute arbitrary commands or scripts contained in the repository
without having to define an action folder. The downside of this
approach is that, depending on the command being executed, the
workflow might not be portable.

NOTE: The working directory for actions that run on the host
depends on how the action is defined. If an action folder is present,
the $PWD is set to the action folder. If uses='sh' is used, the
$PWD is set to the root of the project. Thus, to ensure portability,
scripts should use paths relative to the root of the folder. If absolute
paths are needed, the $GITHUB_WORKSPACE variable can be used.

Examples

A list of example workflows can be found at
https://github.com/popperized/popper-examples. Other examples can be
found on Github’s official actions
organization [https://github.com/actions].

Other Resources

	Official Github Actions
documentation [https://developer.github.com/actions/].

	Awesome-actions list [https://github.com/sdras/awesome-actions].

	Self-paced hands-on
tutorial [https://popperized.github.io/swc-lesson-2.x].

FAQ

How can we deal with large datasets? For example I have to work on large data of hundreds GB, how would this be integrated into Popper?

For datasets that are large enough that they cannot be managed by Git,
solutions such as a PFS, GitLFS, Datapackages, ckan, among others
exist. These tools and services allow users to manage large datasets
and version-control them. From the point of view of Popper, this is
just another tool that will get invoked as part of the execution of a
pipeline. As part of our documentation, we have examples on how to use
datapackages, and another on how to use data.world.

How can Popper capture more complex workflows? For example, automatically restarting failed tasks?

A Popper pipeline is a simple sequence of bash scripts. Popper is not
a replacement for scientific workflow engines, instead, its goal is to
capture the highest-most workflow: the human interaction with a
terminal.

Can I follow Popper in computational science research, as opposed to computer science?

Yes, the goal for Popper is to make it a domain-agnostic
experimentation protocol. See the examples section
for more.

How to apply the Popper protocol for applications that take large quantities of computer time?

The popper run takes an optional action argument that can be used
to execute a workflow up to a certain step. See
here.

Contributing

Code of Conduct

Anyone is welcome to contribute to Popper! To get started, take a look
at our contributing guidelines, then dive in with
our list of good first
issues [https://github.com/systemslab/popper/issues?utf8=%E2%9C%93&q=is%3Aissue+label%3A%22good+first+issue%22+is%3Aopen]
and open projects [https://github.com/systemslab/popper/projects].

Popper adheres to the code of conduct posted in this
repository. By participating or contributing to
Popper, you’re expected to uphold this code. If you encounter
unacceptable behavior, please immediately email
us.

Contributing CLI features

To contribute new CLI features:

	Add a new issue [https://github.com/systemslab/popper/issues/new] describing the feature.

	Fork the official repo [https://github.com/systemslab/popper] and implement the issue on a
new branch.

	Add tests for the new feature. We test the popper CLI command
using Popper itself. The Popper pipeline for testing the popper
command is available
here [https://github.com/systemslab/popper/blob/master/ci/].

	Open a pull request against the master branch.

Contributing example pipelines

We invite anyone to implement (and document) Popper pipelines
demonstrating the use of a DevOps tool, or how to apply Popper in a
particular domain. Implementing a new example is done in two parts.

Implement the pipeline

A popper pipeline is implemented by following the convention. See the
Concepts and Examples section for
more.

Once a pipeline has been implemented, it needs to be uploaded to
github, gitlab or any other repo publicly available. We use the
organization https://github.com/popperized to host examples
developed by the Popper team and collaborators. Pipelines on this
organization are available by default to the popper search
command, so users can add it easily to their repos (using popper add). To add a repository containing one or more pipelines to this
organization, please first create the repository on GitHub under an
organization you own and then do one of the following:

	Transfer ownership of the repo to the popperized organization.

	Open an issue [https://github.com/systemslab/popper/issues/new] requesting the repository to be forked or
mirrored. NOTE: forks and mirrors need to be updated manually
in order to reflect changes done on the base/upstream repository.

Document the pipeline

We encourage contributors to document pipelines by adding them to our
list of examples. To add new documentation:

	Fork the official repo [https://github.com/systemslab/popper].

	Add a new item on the
docs/sections/examples.md [https://github.com/systemslab/popper/blob/master/docs/sections/examples]
file.

	Open pull request against the master branch.

Index

NOTE: Adapted from Kate Keahey’s guidelines

Each article consists of two parts:

	free form explanation (few paragraphs). This will answer:

	What domain does this pertains? What problem is being solved?

	How does the contribution (e.g. concepts, code, guidelines,
etc) help readers?

	What dependencies does it have and how should users use it?

	Optional: are there specific ideas, contributions, or
resources that you would like to acknowledge?

	Anything else you feel is relevant

	meta-data.

	type of contribution:

	pipeline

	software

	experience

	other

	author(s)

	link to code/repository

	license/terms of use

	link to documentation

	dependencies:

	tools (e.g. docker, vagrant, etc.)

	hardware (e.g. machine with GPU or FPGA)

	support email (optional)

	community contacts (e.g., community mailing list):

Tentative schedule

Date	Subject	Author
——	————–	——
07/13	chameleon	Rafa
07/20	GSoC 1	Ankit
07/27	repro/repeat	Ivo
08/03	cloudlab	Fran
08/10		
08/17		
08/24		
08/31		

 _static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/popper_logo.png
alsifiable.us

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Popper

 		
 Getting Started

 		
 Create a Git repository

 		
 Link to GitHub repository

 		
 Create a workflow

 		
 Run your workflow

 		
 Continuously Run Your Workflow on Travis

 		
 CLI feautures

 		
 New workflow initialization

 		
 Executing a workflow

 		
 Environment Variables

 		
 Reusing existing workflows

 		
 Continuously validating a pipeline

 		
 TravisCI

 		
 CircleCI

 		
 GitLab-CI

 		
 Jenkins

 		
 Visualizing workflows

 		
 Extensions

 		
 Downloading actions from arbitrary Git repositories

 		
 Other Runtimes

 		
 Singularity

 		
 Host

 		
 Examples

 		
 Other Resources

 		
 FAQ

 		
 How can we deal with large datasets? For example I have to work on large data of hundreds GB, how would this be integrated into Popper?

 		
 How can Popper capture more complex workflows? For example, automatically restarting failed tasks?

 		
 Can I follow Popper in computational science research, as opposed to computer science?

 		
 How to apply the Popper protocol for applications that take large quantities of computer time?

 		
 Contributing

 		
 Code of Conduct

 		
 Contributing CLI features

 		
 Contributing example pipelines

 		
 Implement the pipeline

 		
 Document the pipeline

_static/ajax-loader.gif

