
Popper Documentation
Release 2.x

Ivo Jimenez

Mar 09, 2020

Contents

1 Getting Started 3
1.1 Installation . 3
1.2 Create a Git repository . 4
1.3 Create a workflow . 4
1.4 Run your workflow . 5
1.5 Link to GitHub repository . 5
1.6 Continuously Run Your Workflow on Travis . 5

2 Workflow Language 7
2.1 Workflow . 7
2.2 Downloading actions from arbitrary Git repositories . 7
2.3 Other Runtimes . 8

3 CLI feautures 9
3.1 New workflow initialization . 9
3.2 Executing a workflow . 10
3.3 Environment Variables . 10
3.4 Reusing existing workflows . 10
3.5 Searching for actions . 10
3.6 Continuously validating a workflow . 11
3.7 Visualizing workflows . 13

4 Guides 15
4.1 Implementing a Workflow for an Existing Set of Scripts . 15

5 Other Resources 19

6 FAQ 21
6.1 How can I create a virtual environment to install Popper . 21
6.2 How can we deal with large datasets? For example I have to work on large data of hundreds GB, how

would this be integrated into Popper? . 21
6.3 How can Popper capture more complex workflows? For example, automatically restarting failed tasks? 22
6.4 Can I follow Popper in computational science research, as opposed to computer science? 22
6.5 How to apply the Popper protocol for applications that take large quantities of computer time? 22
6.6 Installing Popper shows a pyhcl error . 22

7 Contributing 25

i

7.1 Code of Conduct . 25
7.2 Install from source . 25
7.3 Contributing CLI features . 26
7.4 Contributing example pipelines . 26

8 Indices and tables 27

ii

Popper Documentation, Release 2.x

Popper is a Github Actions (GHA) workflow execution engine that allows you to execute GHA workflows (in HCL
syntax) locally on your machine and on CI services.

Contents 1

Popper Documentation, Release 2.x

2 Contents

CHAPTER 1

Getting Started

Popper is a workflow execution engine based on Github Actions (GHA) written in Python. With Popper, you can
execute HCL syntax workflows locally on your machine without having to use Github’s platform.

1.1 Installation

We provide a pip package for Popper. To install simply run:

pip install popper

Depending on your Python distribution or specific environment configuration, using Pip might not be possible (e.g.
you need administrator privileges) or using pip directly might incorrectly install Popper. We highly recommend to
install Popper in a Python virtual environment using virtualenv. The following installation instructions assume that
virtualenv is installed in your environment (see here for more). Once virtualenv is available in your machine,
we proceed to create a folder where we will place the Popper virtual environment:

create a folder for storing virtual environments
mkdir $HOME/virtualenvs

We then create a virtualenv for Popper. This will depend on the method with which virtualenv was installed.
Here we present three alternatives that cover most of these alternatives:

1) virtualenv installed via package, e.g.:
- apt install virtualenv (debian/ubuntu)
- yum install virtualenv (centos/redhat)
- conda install virtualenv (conda)
- pip install virtualenv (pip)
virtualenv $HOME/virtualenvs/popper

2) virtualenv installed via Python 2.7 built-in module
python -m virtualenv $HOME/virtualenvs/popper

(continues on next page)

3

https://github.com/features/actions
https://github.com/actions/workflow-parser/blob/master/language
https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/stable/
https://virtualenv.pypa.io/en/latest/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#installing-virtualenv

Popper Documentation, Release 2.x

(continued from previous page)

3) virtualenv installed via Python 3.6+ built-in module
python -m venv $HOME/virtualenvs/popper

NOTE: in the case of conda, we recommend the creation of a new environment before virtualenv
is installed in order to avoid issues with packages that might have been installed previously.

We then load the environment we just created above:

source $HOME/virtualenvs/popper/bin/activate

Finally, we install Popper in this environment using pip:

pip install popper

To test all is working as it should, we can show the version we installed:

popper version

And to get a list of available commands:

popper --help

NOTE: given that we are using virtualenv, once the shell session is ended (when we close the termi-
nal window or tab), the environment is unloaded and newer sessions (new window or tab) will not have
the popper command available in the PATH variable. In order to have the environment loaded again we
need to execute the source command (see above). In the case of conda we need to load the Conda
environment (conda activate command).

1.2 Create a Git repository

Create a project repository (if you are not familiar with Git, look here):

mkdir myproject
cd myproject
git init
echo '# myproject' > README.md
git add .
git commit -m 'first commit'

1.3 Create a workflow

First, we create an example .workflow file with a pre-defined workflow:

popper scaffold

The above generates an example workflow that you can use as the starting point of your project. We first commit the
files that got generated:

git add .
git commit -m 'Adding example workflow.'

To learn more about how to modify this workflow in order to fit your needs, please take a look at the workflow language
documentation read this tutorial, or take a look at some examples.

4 Chapter 1. Getting Started

https://www.learnenough.com/git-tutorial
https://scotch.io/bar-talk/introducing-github-actions#toc-how-it-works
https://github.com/popperized/popper-examples

Popper Documentation, Release 2.x

1.4 Run your workflow

To execute the workflow you just created:

popper run

You should see the output of actions printed to the terminal.

1.5 Link to GitHub repository

Create a repository on Github. Once your Github repository has been created, register it as a remote repository on
your local repository:

git remote add origin git@github.com:<user>/<repo>

where <user> is your username and <repo> is the name of the repository you have created. Then, push your local
commits:

git push -u origin master

1.6 Continuously Run Your Workflow on Travis

For this, we need to login to Travis CI using our Github credentials. Once this is done, we activate the project so it is
continuously validated.

Generate .travis.yml file:

popper ci travis

And commit the file:

git add .travis.yml
git commit -m 'Adds TravisCI config file'

Trigger an execution by pushing to github:

git push

Go to the TravisCI website to see your experiments being executed.

1.4. Run your workflow 5

https://help.github.com/articles/create-a-repo/
https://docs.travis-ci.com/user/getting-started/#Prerequisites
https://docs.travis-ci.com/user/getting-started/#To-get-started-with-Travis-CI

Popper Documentation, Release 2.x

6 Chapter 1. Getting Started

CHAPTER 2

Workflow Language

This section introduces the Github Actions Workflow Language HCL Syntax.

NOTE: This language is NOT supported by the official Github Actions platform. The HCL syntax was
deprecated in 09/30/2019 (see [official announcement][]).

2.1 Workflow

2.2 Downloading actions from arbitrary Git repositories

The syntax for defining actions in a workflow is the following:

action "IDENTIFIER" {
needs = "ACTION1"
uses = "docker://image2"

}

The uses attribute references Docker images, filesystem paths or github repositories (see syntax documentation for
more). In the case where an action references a public repository, Popper extends the syntax in the following way:

{url}/{user}/{repo}/{path}@{ref}

The {url} can reference any Git repository, allowing workflows to reference actions outside of Github. For example:

action "myaction on gitlab" {
uses = "git@gitlab.com:user/repo/path/to/my/action@master"

}

action "another one on bitbucket" {
uses = "https://bitbucket.com/user/repo/action@master"

}

The above shows an example of a workflow referencing actions hosted on Gitlab and Bitbucket, respectively.

7

https://developer.github.com/actions/managing-workflows/workflow-configuration-options/#using-a-dockerfile-image-in-an-action
https://gitlab.com
https://bitbucket.org

Popper Documentation, Release 2.x

2.3 Other Runtimes

By default, actions in Popper workflows run in Docker, similarly to how they run in the Github Actions platform.
Popper adds the ability of running actions in other runtimes by providing a --runtime flag to the popper run
command.

NOTE: As part of our roadmap, we plan to add support for Vagrant and Podman runtimes. Open a new
issue to request another runtime you would want Popper to support.

2.3.1 Singularity

Popper can execute a workflow in systems where Singularity 3.2+ is available. To execute a workflow in Singularity
containers:

popper run --runtime singularity

When no --runtime option is supplied, Popper executes workflows in Docker.

Limitations

• The use of ARG in Dockerfiles is not supported by Singularity.

• Currently, the --reuse functionality of the popper run command is not available when running in Singu-
larity.

2.3.2 Host

There are situations where a container runtime is not available and cannot be installed. In these cases, an action can
execute directly on the host where the popper command is running by making use of the special sh value for the
uses attribute. This value instructs Popper to execute the command (given in the args attribute) or script (specified
in the runs attribute) directly on the host. For example:

action "run on host" {
uses = "sh"
args = ["ls", "-la"]

}

action "another execution on host" {
uses = "sh"
runs = "./path/to/my/script.sh"
args = "args"

}

In the first example action above, the ls -la command is executed on the root of the repository folder (the repository
storing the .workflow file). In the second one shows how to execute a script. The obvious downside of running
actions on the host is that, depending on the command being executed, the workflow might not be portable.

NOTE: The working directory (the value of $PWD when a command or script is executed) is the root of
the project. Thus, to ensure portability, scripts should make use of paths relative to the root of the folder.
If absolute paths are needed, the $GITHUB_WORKSPACE variable can be used.

8 Chapter 2. Workflow Language

https://www.vagrantup.com/
https://podman.io/
https://github.com/systemslab/popper/issues/new
https://github.com/systemslab/popper/issues/new

CHAPTER 3

CLI feautures

3.1 New workflow initialization

Create a Git repository:

mkdir mypaper
cd mypaper
git init
echo '# mypaper' > README.md
git add .
git commit -m 'first commit'

Initialize the popper repository and add the configuration file to git:

popper init
git add .
git commit -m 'adds .popper.yml file'

Initialize a workflow

popper scaffold

Show what this did:

ls -l

Commit the “empty” pipeline:

git add .
git commit -m 'adding my first workflow'

9

Popper Documentation, Release 2.x

3.2 Executing a workflow

To run the workflow:

popper run

or to execute all the workflows in a project:

popper run --recursive

3.3 Environment Variables

Popper defines the same environment variables that are defined by the official Github Actions runner. To see the values
assigned to these variables, run the following workflow:

workflow "env workflow" {
resolves = "show env"

}

action "show env" {
uses = "popperized/bin/sh@master"
args = ["env"]

}

3.4 Reusing existing workflows

Many times, when starting an experiment, it is useful to be able to use an existing workflow as a scaffold for the one we
wish to write. The popper-examples repository contains a list of example workflows and actions for the purpose
of both learning and to use them as a starting point. Another examples can be found on Github’s official actions
organization.

Once you have found a workflow you’re interested in importing, you can use the popper add command to obtain a
workflow. For example:

cd myproject/
mkdir myworkflow
popper add https://github.com/popperized/popper-examples/workflows/cloudlab-iperf-test
Downloading workflow data-science as data-science...
Workflow docker-data-science has been added successfully.

This will download the contents of the workflow and all its dependencies to your project tree.

3.5 Searching for actions

The popper CLI is capable of searching for premade actions that you can use in your workflows.

You can use the popper search command to search for actions based on a search keyword. For example, to search
for npm based actions, you can simply run:

10 Chapter 3. CLI feautures

https://developer.github.com/actions/creating-github-actions/accessing-the-runtime-environment/#environment-variables
https://github.com/popperized/popper-examples
https://github.com/actions
https://github.com/actions

Popper Documentation, Release 2.x

$ popper search npm
Matched actions :

> actions/npm

Additionally, when searching for an action, you may choose to include the contents of the readme in your search by
using the --include-readme flag.

Once popper search runs, it caches all the metadata related to the search. So, to get the latest releases of the
actions, you might want to update the cache using the --update-cache flag.

By default, popper searches for actions from a list present here. To help the list keep growing, you can add Github
organization names or repository names(org/repo) and send a pull request to the upstream repository.

To get the details of a searched action, use the popper info command. For example,

popper info popperized/cmake
An action for building CMake projects.

3.6 Continuously validating a workflow

The ci subcommand generates configuration files for multiple CI systems. The syntax of this command is the follow-
ing:

popper ci <service-name>

Where <name> is the name of CI system (see popper ci --help to get a list of supported systems). In the
following, we show how to link github with some of the supported CI systems. In order to do so, we first need to
create a repository on github and upload our commits:

set the new remote
git remote add origin <your-github-repo-url>

verify the remote URL
git remote -v

push changes in your local repository up to github
git push -u origin master

3.6.1 TravisCI

For this, we need an account at Travis CI. Assuming our Popperized repository is already on GitHub, we can enable
it on TravisCI so that it is continuously validated (see here for a guide). Once the project is registered on Travis, we
proceed to generate a .travis.yml file:

cd my-popper-repo/
popper ci travis

And commit the file:

git add .travis.yml
git commit -m 'Adds TravisCI config file'

We then can trigger an execution by pushing to GitHub:

3.6. Continuously validating a workflow 11

https://github.com/systemslab/popper/blob/master/cli/resources/search_sources.yml
http://travis-ci.org
https://docs.travis-ci.com/user/getting-started/

Popper Documentation, Release 2.x

git push

After this, one go to the TravisCI website to see your pipelines being executed. Every new change committed to a
public repository will trigger an execution of your pipelines. To avoid triggering an execution for a commit, include a
line with [skip ci] as part of the commit message.

NOTE: TravisCI has a limit of 2 hours, after which the test is terminated and failed.

3.6.2 CircleCI

For CircleCI, the procedure is similar to what we do for TravisCI (see above):

1. Sign in to CircleCI using your github account and enable your repository.

2. Generate config files and add them to the repo:

cd my-popper-repo/
popper ci circle
git add .circleci
git commit -m 'Adds CircleCI config files'
git push

3.6.3 GitLab-CI

For GitLab-CI, the procedure is similar to what we do for TravisCI and CircleCI (see above), i.e. generate config files
and add them to the repo:

cd my-popper-repo/
popper ci gitlab
git add .gitlab-ci.yml
git commit -m 'Adds GitLab-CI config file'
git push

If CI is enabled on your instance of GitLab, the above should trigger an execution of the pipelines in your repository.

3.6.4 Jenkins

For Jenkins, generating a Jenkinsfile is done in a similar way:

cd my-popper-repo/
popper ci jenkins
git add Jenkinsfile
git commit -m 'Adds Jenkinsfile'
git push

Jenkins is a self-hosted service and needs to be properly configured in order to be able to read a github project with
a Jenkinsfile in it. The easiest way to add a new project is to use the Blue Ocean UI. A step-by-step guide on
how to create a new project using the Blue Ocean UI can be found here. In particular, the New Pipeline from
a Single Repository has to be selected (as opposed to Auto-discover Pipelines).

12 Chapter 3. CLI feautures

https://circleci.com/
https://about.gitlab.com/features/gitlab-ci-cd/
https://jenkinsci.org
https://jenkins.io/projects/blueocean/
https://jenkins.io/doc/book/blueocean/creating-pipelines/

Popper Documentation, Release 2.x

3.6.5 Specifying which workflows to run via commit messages

When a CI service executes a popper workflow by invoking popper run on the CI server, it does so without passing
any flags and hence we cannot specify which workflow to skip or execute. To make this more flexible, popper provides
the ability to control which workflows to be executed by looking for special keywords in commit messages.

The popper:whitelist[<list-of-workflows>] keyword can be used in a commit message to specify
which workflows to execute among all the workflows present in the project. For example,

This is a sample commit message that shows how we can request the
execution of a particular workflow.

popper:whitelist[/path/to/workflow/a.workflow]

The above commit message specifies that only the workflow awill be executed and any other workflow will be skipped.
A comma-separated list of workflow paths can be given in order to request the execution of more than one workflow.
Alternatively, a skip list is also supported with the popper:skip[<list-of-workflows>] keyword to specify
the list of workflows to be skipped.

3.7 Visualizing workflows

While .workflow files are relatively simple to read, it is nice to have a way of quickly visualizing the steps contained
in a workflow. Popper provides the option of generating a graph for a workflow. To generate a graph for a pipeline,
execute the following:

popper dot

The above generates a graph in .dot format. To visualize it, you can install the graphviz package and execute:

popper dot | dot -T png -o wf.png

The above generates a wf.png file depicting the workflow. Alternatively you can use the http://www.webgraphviz.
com/ website to generate a graph by copy-pasting the output of the popper dot command.

3.7. Visualizing workflows 13

https://graphviz.gitlab.io/
http://www.webgraphviz.com/
http://www.webgraphviz.com/

Popper Documentation, Release 2.x

14 Chapter 3. CLI feautures

CHAPTER 4

Guides

This is a list of guides related to several aspects of working with Github Action (GHA) workflows.

4.1 Implementing a Workflow for an Existing Set of Scripts

This guide exemplifies how to define a Github Action (GHA) workflow for an existing set of scripts. Assume we have
a project in a myproject/ folder and a list of scripts within the myproject/scripts/ folder, as shown below:

cd myproject/
ls -l scripts/

total 16
-rwxrwx--- 1 user staff 927B Jul 22 19:01 download-data.sh
-rwxrwx--- 1 user staff 827B Jul 22 19:01 get_mean_by_group.py
-rwxrwx--- 1 user staff 415B Jul 22 19:01 validate_output.py

A straight-forward workflow for wrapping the above is the following:

workflow "co2 emissions" {
resolves = "validate results"

}

action "download data" {
uses = "popperized/bin/sh@master"
args = ["scripts/download-data.sh"]

}

action "run analysis" {
needs = "download data"
uses = "popperized/bin/sh@master"
args = ["workflows/minimal-python/scripts/get_mean_by_group.py", "5"]

}

(continues on next page)

15

Popper Documentation, Release 2.x

(continued from previous page)

action "validate results" {
needs = "run analysis"
uses = "popperized/bin/sh@master"
args = [
"workflows/minimal-python/scripts/validate_output.py",
"workflows/minimal-python/data/global_per_capita_mean.csv"

]
}

The above runs every script within a Docker container, whose image is the one associated to the popperized/
bin/sh action (see corresponding Github repository here). As you would expect, this workflow fails to run since
the popperized/bin/sh image is a lightweight one (contains only Bash utilities), and the dependencies that the
scripts need are not be available in this image. In cases like this, we need to either use an existing action that has all
the dependencies we need, or create an action ourselves.

In this particular example, these scripts depend on CURL and Python. Thankfully, actions for these already exist, so
we can make use of them as follows:

workflow "co2 emissions" {
resolves = "validate results"

}

action "download data" {
uses = "popperized/bin/curl@master"
args = [
"--create-dirs",
"-Lo workflows/minimal-python/data/global.csv",
"https://github.com/datasets/co2-fossil-global/raw/master/global.csv"

]
}

action "run analysis" {
needs = "download data"
uses = "jefftriplett/python-actions@master"
args = [
"workflows/minimal-python/scripts/get_mean_by_group.py",
"workflows/minimal-python/data/global.csv",
"5"

]
}

action "validate results" {
needs = "run analysis"
uses = "jefftriplett/python-actions@master"
args = [
"workflows/minimal-python/scripts/validate_output.py",
"workflows/minimal-python/data/global_per_capita_mean.csv"

]
}

The above workflow runs correctly anywhere where Github Actions workflow can run.

NOTE: The download-data.sh contained just one line invoking CURL, so we make that call directly
in the action block and remove the bash script.

16 Chapter 4. Guides

https://github.com/popperized/bin/tree/master/sh
https://medium.com/getpopper/searching-for-existing-github-actions-has-never-been-easier-268c463f0257
https://developer.github.com/actions/creating-github-actions/

Popper Documentation, Release 2.x

4.1.1 When no container runtime is available

In scenarios where a container runtime is not available, the special sh value for the uses attribute of action blocks
can be used. This value instructs Popper to execute actions directly on the host machine (as opposed to executing in a
container runtime). The example workflow above would be rewritten as:

workflow "co2 emissions" {
resolves = "validate results"

}

action "download data" {
uses = "sh"
args = [
"curl", "--create-dirs",
"-Lo workflows/minimal-python/data/global.csv",
"https://github.com/datasets/co2-fossil-global/raw/master/global.csv"

]
}

action "run analysis" {
needs = "download data"
uses = "sh"
args = [
"workflows/minimal-python/scripts/get_mean_by_group.py",
"workflows/minimal-python/data/global.csv",
"5"

]
}

action "validate results" {
needs = "run analysis"
uses = "sh"
args = [
"workflows/minimal-python/scripts/validate_output.py",
"workflows/minimal-python/data/global_per_capita_mean.csv"

]
}

The obvious downside of running actions directly on the host is that dependencies assumed by the scripts might not
be available in other environments where the workflow is being re-executed. Since there are no container images
associated to actions that use sh, this will likely break the portability of the workflow. In this particular example, if
the workflow above runs on a machine without CURL or on Python 2.7, it will fail.

NOTE: The uses = "sh" special value is not supported by the Github Actions platform. This workflow
will fail to run on GitHub’s infrastructure and can only be executed using Popper.

4.1. Implementing a Workflow for an Existing Set of Scripts 17

Popper Documentation, Release 2.x

18 Chapter 4. Guides

CHAPTER 5

Other Resources

• Official Github Actions documentation.

• A list of example workflows can be found at https://github.com/popperized/popper-examples. Other examples
can be found on Github’s official actions organization.

• Awesome-actions list.

• Self-paced hands-on tutorial.

19

https://developer.github.com/actions/
https://github.com/popperized/popper-examples
https://github.com/actions
https://github.com/sdras/awesome-actions
https://popperized.github.io/swc-lesson

Popper Documentation, Release 2.x

20 Chapter 5. Other Resources

CHAPTER 6

FAQ

6.1 How can I create a virtual environment to install Popper

The following creates a virtual environment in a $HOME/venvs/popper folder:

create virtualenv
virtualenv $HOME/venvs/popper

activate it
source $HOME/venvs/popper/bin/activate

install Popper in it
pip install popper

The first step is is only done once. After closing your shell, or opening another tab of your terminal emulator, you’ll
have to reload the environment (activate it line above). For more on virtual environments, see here.

6.2 How can we deal with large datasets? For example I have to work
on large data of hundreds GB, how would this be integrated into
Popper?

For datasets that are large enough that they cannot be managed by Git, solutions such as a PFS, GitLFS, Datapackages,
ckan, among others exist. These tools and services allow users to manage large datasets and version-control them.
From the point of view of Popper, this is just another tool that will get invoked as part of the execution of a pipeline.
As part of our documentation, we have examples on how to use datapackages, and another on how to use data.world.

21

https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#installing-virtualenv

Popper Documentation, Release 2.x

6.3 How can Popper capture more complex workflows? For example,
automatically restarting failed tasks?

A Popper pipeline is a simple sequence of “containerized bash scripts”. Popper is not a replacement for scientific
workflow engines, instead, its goal is to capture the highest-most workflow: the human interaction with a terminal.

6.4 Can I follow Popper in computational science research, as op-
posed to computer science?

Yes, the goal for Popper is to make it a domain-agnostic experimentation protocol. See the https://github.com/
popperized/popper-examples repository for examples.

6.5 How to apply the Popper protocol for applications that take large
quantities of computer time?

The popper run takes an optional action argument that can be used to execute a workflow up to a certain step.
See here.

6.6 Installing Popper shows a pyhcl error

This project uses pyhcl, and when pip installs Popper, in some cases the below error is reported but it can be safely
ignored.

Building wheels for collected packages: pyhcl
Building wheel for pyhcl (setup.py) ... error
ERROR: Complete output from command /Users/ivo/virtualenvs/test/bin/python3.7 -u -c

→˓'import setuptools, tokenize;__file__='"'"'/private/var/folders/6c/pl43v
kgd0f5c29ffsnvkwvth0000gn/T/pip-install-kv3rwdd9/pyhcl/setup.py'"'"';
→˓f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'
→˓"'"',
'"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' bdist_wheel -
→˓d /private/var/folders/6c/pl43vkgd0f5c29ffsnvkwvth0000gn/T/pip-wheel-8m6v
ve9q --python-tag cp37:

ERROR: running bdist_wheel
running build
running build_py
Generating parse table...
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/private/var/folders/6c/pl43vkgd0f5c29ffsnvkwvth0000gn/T/pip-install-

→˓kv3rwdd9/pyhcl/setup.py", line 101, in <module>
"Topic :: Text Processing",

File "/usr/local/Cellar/python/3.7.2_2/Frameworks/Python.framework/Versions/3.7/
→˓lib/python3.7/distutils/core.py", line 148, in setup

dist.run_commands()
File "/usr/local/Cellar/python/3.7.2_2/Frameworks/Python.framework/Versions/3.7/

→˓lib/python3.7/distutils/dist.py", line 966, in run_commands
self.run_command(cmd)

(continues on next page)

22 Chapter 6. FAQ

https://github.com/popperized/popper-examples
https://github.com/popperized/popper-examples
cli_features.html

Popper Documentation, Release 2.x

(continued from previous page)

File "/usr/local/Cellar/python/3.7.2_2/Frameworks/Python.framework/Versions/3.7/
→˓lib/python3.7/distutils/dist.py", line 985, in run_command

cmd_obj.run()
File "/Users/ivo/virtualenvs/test/lib/python3.7/site-packages/wheel/bdist_wheel.py

→˓", line 192, in run
self.run_command('build')

File "/usr/local/Cellar/python/3.7.2_2/Frameworks/Python.framework/Versions/3.7/
→˓lib/python3.7/distutils/cmd.py", line 313, in run_command

self.distribution.run_command(command)
File "/usr/local/Cellar/python/3.7.2_2/Frameworks/Python.framework/Versions/3.7/

→˓lib/python3.7/distutils/dist.py", line 985, in run_command
cmd_obj.run()

File "/usr/local/Cellar/python/3.7.2_2/Frameworks/Python.framework/Versions/3.7/
→˓lib/python3.7/distutils/command/build.py", line 135, in run

self.run_command(cmd_name)
File "/usr/local/Cellar/python/3.7.2_2/Frameworks/Python.framework/Versions/3.7/

→˓lib/python3.7/distutils/cmd.py", line 313, in run_command
self.distribution.run_command(command)

File "/usr/local/Cellar/python/3.7.2_2/Frameworks/Python.framework/Versions/3.7/
→˓lib/python3.7/distutils/dist.py", line 985, in run_command

cmd_obj.run()
File "/private/var/folders/6c/pl43vkgd0f5c29ffsnvkwvth0000gn/T/pip-install-

→˓kv3rwdd9/pyhcl/setup.py", line 39, in run
self.execute(_pre_install, (), msg="Generating parse table...")

File "/usr/local/Cellar/python/3.7.2_2/Frameworks/Python.framework/Versions/3.7/
→˓lib/python3.7/distutils/cmd.py", line 335, in execute

util.execute(func, args, msg, dry_run=self.dry_run)
File "/usr/local/Cellar/python/3.7.2_2/Frameworks/Python.framework/Versions/3.7/

→˓lib/python3.7/distutils/util.py", line 286, in execute
func(*args)

File "/private/var/folders/6c/pl43vkgd0f5c29ffsnvkwvth0000gn/T/pip-install-
→˓kv3rwdd9/pyhcl/setup.py", line 31, in _pre_install

import hcl
File "/private/var/folders/6c/pl43vkgd0f5c29ffsnvkwvth0000gn/T/pip-install-

→˓kv3rwdd9/pyhcl/src/hcl/__init__.py", line 1, in <module>
from .api import dumps, load, loads

File "/private/var/folders/6c/pl43vkgd0f5c29ffsnvkwvth0000gn/T/pip-install-
→˓kv3rwdd9/pyhcl/src/hcl/api.py", line 2, in <module>

from .parser import HclParser
File "/private/var/folders/6c/pl43vkgd0f5c29ffsnvkwvth0000gn/T/pip-install-

→˓kv3rwdd9/pyhcl/src/hcl/parser.py", line 4, in <module>
from .lexer import Lexer

File "/private/var/folders/6c/pl43vkgd0f5c29ffsnvkwvth0000gn/T/pip-install-
→˓kv3rwdd9/pyhcl/src/hcl/lexer.py", line 3, in <module>

import ply.lex as lex
ModuleNotFoundError: No module named 'ply'
--
ERROR: Failed building wheel for pyhcl
Running setup.py clean for pyhcl

Failed to build pyhcl

6.6. Installing Popper shows a pyhcl error 23

Popper Documentation, Release 2.x

24 Chapter 6. FAQ

CHAPTER 7

Contributing

7.1 Code of Conduct

Anyone is welcome to contribute to Popper! To get started, take a look at our contributing guidelines, then dive in
with our list of good first issues and open projects.

Popper adheres to the code of conduct posted in this repository. By participating or contributing to Popper, you’re
expected to uphold this code. If you encounter unacceptable behavior, please immediately email us.

7.2 Install from source

To install Popper in “development mode”, we suggest the following approach:

cd $HOME/

create virtualenv
python -m virtualenv $HOME/virtualenvs/popper

load virtualenv
source $HOME/virtualenvs/popper/bin/activate

clone popper
git clone git@github.com:systemslab/popper
cd popper

install popper from source
pip install -e cli[dev]

The -e flag passed to pip tells it to install the package from the source folder, and if you modify the logic in the
popper source code you will see the effects when you invoke the popper command. So with the above approach
you have both (1) popper installed in your machine and (2) an environment where you can modify popper and test the
results of such modifications.

25

https://github.com/systemslab/popper/issues?utf8=%E2%9C%93&q=is%3Aissue+label%3A%22good+first+issue%22+is%3Aopen
https://github.com/systemslab/popper/projects
mailto:ivo@cs.ucsc.edu

Popper Documentation, Release 2.x

NOTE: The virtual environment created above needs to be reloaded every time you open a new terminal
window (source commmand), otherwise the popper command will not be found by your shell.

7.3 Contributing CLI features

To contribute new CLI features:

1. Add a new issue describing the feature.

2. Fork the official repo and implement the issue on a new branch.

3. Add tests for the new feature. We test the popper CLI command using Popper itself. The Popper pipeline for
testing the popper command is available here.

4. Open a pull request against the master branch.

7.4 Contributing example pipelines

We invite anyone to implement and document Github Action workflows. To add an example, you can fork an open a
PR on the https://github.com/popperized/popper-examples repository.

26 Chapter 7. Contributing

https://github.com/systemslab/popper/issues/new
https://github.com/systemslab/popper
https://github.com/systemslab/popper/blob/master/ci/
https://github.com/popperized/popper-examples

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

27

	Getting Started
	Installation
	Create a Git repository
	Create a workflow
	Run your workflow
	Link to GitHub repository
	Continuously Run Your Workflow on Travis

	Workflow Language
	Workflow
	Downloading actions from arbitrary Git repositories
	Other Runtimes

	CLI feautures
	New workflow initialization
	Executing a workflow
	Environment Variables
	Reusing existing workflows
	Searching for actions
	Continuously validating a workflow
	Visualizing workflows

	Guides
	Implementing a Workflow for an Existing Set of Scripts

	Other Resources
	FAQ
	How can I create a virtual environment to install Popper
	How can we deal with large datasets? For example I have to work on large data of hundreds GB, how would this be integrated into Popper?
	How can Popper capture more complex workflows? For example, automatically restarting failed tasks?
	Can I follow Popper in computational science research, as opposed to computer science?
	How to apply the Popper protocol for applications that take large quantities of computer time?
	Installing Popper shows a pyhcl error

	Contributing
	Code of Conduct
	Install from source
	Contributing CLI features
	Contributing example pipelines

	Indices and tables

